Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Параметры: цветовой тон, насыщенность, яркость

 

Практический подход

 

Занятие 10. ПАРАМЕТРЫ: ЦВЕТОВОЙ ТОН, НАСЫЩЕННОСТЬ,

ЯРКОСТЬ

 

Порядок выполнения работы

Этот опыт касается любой системы Цветовой тон, Насыщенность, Яркость (TSL)

Сравните систему RGB с системой TSL.

Круг представляет собой насыщенность.

Направление луча представляет собой цветовой тон.

Параметр Яркость находится в третьем измерении.

Перемещайте цветовой прямоугольник для противопоставления с полученными цветами.

 

А. Где находится цвет, полученный в системе TSL?

B. Где проходит ось яркости?

C. Какова форма колориметрического диапазона?

D. Возможно ли получение такого диапазона с помощью линейной трансформации?

E. В появившемся меню выберите за основу синие цвета. Что вы думаете о полученном круге?

Результаты и выводы

 

А. Полученный цвет находится на пересечении луча цветового тона и круга насыщен­ности.

B. Ось яркости проходит через центр круга.

C. Полученная фигура – конус. Это одно из возможных изображений системы TSL, существуют и другие.

D. Эту фигуру невозможно было бы получить линейным методом, потому что его не­достаточно для преобразования куба в конус.

Е. Выбрав за основу синие цвета, вы получите цвета в порядке их появления на вектроскопе видеокамеры, но будьте внимательны: это не колориметрическое видеопространство, полученное линейным методом (матрицей).

 

Теория

Параметры цветовой тон, насыщенность, яркость присутствуют в работах многих специалистов по колориметрии, среди которых следует отметить, прежде всего, А. Манселла и В. Оствальда, которые независимо друг от друга разработали цветовые атласы на основе хроматического круга. Эти пространства называются по-английски hue, saturation, value, или HSB, Hue, Saturation, Brightness, где одним из критериев является яркость, или светлота цвета. Может возникнуть некоторая путаница с по­нятием яркости в фотометрии, поэтому более обоснованным будет использование термина светлоты, который обозначает субъективное восприятие яркости, и даже понятия субъективной яркости (brightness). В любом случае термин яркость прочно вошел в язык, и существуют четкие различия фотометрического понятия яркости и видеозаписи, где этот термин описывает электрический сигнал. Поэтому термин luma (яркость) предпочтительнее. Также речь может идти о воспринимаемой силе света для прямых источников и об освещенности для освещенных объектов, причем оба термина являются синонимами яркости1. В психофизиологии хромией называют чувственное восприятие цветового тона и насыщенности. Параметры TSL ориенти­рованы на систему яркость-цветность, или luma-chroma для видеоизображений.

Для многих описание цвета с точки зрения параметров цветовой тон, насыщенность, яркость кажется более логичным. Так же как пространство МКО L*, а*, Ь*, эти пространства часто называют «перцептивными». Напомним, что цвет является результатом восприятия, следовательно, все колориметрические пространства — это воспринимаемые пространства. Эти пространства следовало бы даже называть психологическими. В большей части из них используются полярные координаты, хотя представление такого пространства в декартовых координатах также возможно. Отметим, что этот метод сначала не был принят МКО для разработки хроматичес­кого пространства в 1931 году.

Пусть тригонометрический круг имеет радиус величиной в единицу. Пусть точка Р обозначает цвет. В таком пространстве цветовой тон выражен уг­лом Т, образованным изначальным лу­чом и лучом, проходящим через точку р. Насыщенность будет выражена зна­чением S отрезка ОР. Ось, проходящая через центр круга в третьем измерении, обозначает яркость. Для перехода от пространства RGB к TSL используется нелинейное преобразование.

Можно построить различные виды пространств TSL, от самой простой формы конуса до формы двойного конуса или двойной шестиугольной пирамиды. Во многих программах используется именно этот вид изобра­жения цвета.

Изображение в форме конуса обладает одним недостатком: проис­ходит некоторое смешение понятий яркости и насыщенности, потому что единственный способ получения бе­лого — это уменьшение насыщенности цвета.

 

5.6 Пространство МКО L*, а*, b*

Пространство МКО L*, а*, b* было создано как колориметрическое пространство, соответствующее кодированию сигналов визуального восприятия и однородное с точки зрения дифференциального восприятия цветов. Это пространство также может содержать параметры Цветовой тон, Насыщенность, Яркость. Пространство МКО LAB часто называют «перцептивным» в противопоставлении с другими пространствами. Это не что иное, как сокращение: так как цвет является резуль­татом восприятия, то все колориметрические пространства можно рассматривать как перцептивные. На самом деле это определение следует сформулировать таким образом: психологическое колориметрическое пространство, относительно однородное с точки зрения дифференциального восприятия цветов. В создании этого пространства был использован принцип пространства Hunter Lab 1958 года.

Структура этого пространства основана на работах по организации системы визуального восприятия на трех оппозициях:

· черный — белый (ахроматическая ось);

· красный — зеленый;

· желтый — синий;

(См. § 3.6.)

 

 

Центром этого пространства является ахроматическая ось. Оно вычисляется для каждого стандартного источника света.

На оси + а* – а* красный находится в оппозиции с зеленым.

На оси + b* – b* желтый находится в оппозиции с синим.

Ось L* обозначает светлоту (luma) во избежа­ние смешения этого термина с понятием яркости в фотометрии.

В таком пространстве эллипсы равного вос­приятия должны иметь равную площадь.

Радиус круга с площадью, равной площади эллипсов, четко определяет единицу для каждого из трех измерений.

Переход от пространства МКО ХУZ к про­странству L*, а*, b* возможен, но преобразования в этом случае будут нелинейными.

Пусть — трихроматические координаты эталонного белого, взятого в качестве идеального рассеивателя.

 

 

Рис. 5.23. Три оси пространства МКО LAB

 

Если > 0,008856, то:

,

иначе:

при (значение) = значение , если значение > 0,008856,

иначе (значение) = 7,787значение + .

Отметим, что условия, выдвинутые Паули:

 

предполагают, что эталонные цветовые компоненты достаточно удалены от белой точки. С другой стороны, значение яркости V соответствует ее значению на кри­вой чувствительности глаза к яркости, определение которой было дано выше (см. §3.8).

Если условия Паули учитываются, то уравнения можно записать в упрощенном виде:

С помощью обратной операции можно перейти от системы МКО LAB к системе МКО XYZ.

Если , то

Система LAB позволяет использование цилиндрических координат пространс­тва TSL с координатами L*, С*, Н*. Н* – это цветовой тон (hue), С* – уровень насыщенности (chroma), а значение светлоты (luma) остается постоянным.

 

L* = L*

Н* = при a ≠ 0

 

Для всех случаев полное отклонение цвета

,

 

а отклонение цветового тона:

 

Чтобы глаз смог заметить разницу между цветами, необходимо отклонение хотя бы в единицу, = 1, однако на практике часто допускаются и колоримет­рические отклонения = 5.

 

 

Рис. 5.24. Цветовой круг в пространстве МКО L*a*b*

 

Система МКО L*a*b* имеет ряд недостатков:

 

1. Она не содержит диаграмму цветностей, то есть невозможно вычислить дополнительный цвет или чистоту цвета с помощью простых чертежей или измерений отрезков, так как линии доминантной длины волны становятся в этом пространстве кривыми.

2. При изменении яркости цвета его изображение уже не меняется по прямой. По этой причине это пространство используется в областях, где изменения яркости не являются столь важными, например, в полиграфии.

3. Преобразование насыщенных синих цветов из пространства RGB в L*a*b* немного склоняется к пурпурным, что требует коррекции с помощью программ обработки изображений, таких как Photoshop™.

4. Изохроматические зоны, или эллипсы, не обладают совершенно равной пло­щадью. В частности, изохроматические зоны имеют площадь в два раза больше в области зеленого, чем в области оранжевого. Для всех цветов, расположенных по краям круга, площади этих зон в несколько раз больше, чем площади эллип­сов в центре круга, так как дифференциальное восприятие глаза гораздо шире в области малонасыщенных цветов. Это принцип живописи акварелью, когда изображение накладывается прозрачными цветами на белый фон, и создается бесконечное множество оттенков одним мазком кисти. Что касается съемки на мультиматричную видеокамеру, то колориметрические настройки на сером фоне производить сложнее, чем на цветном фоне. Вы можете повторить первый опыт этого издания, изменив насыщенность цветных карточек (Меню > Настройки изображения > Специальные > Изменить насыщенность). Пространство МКО L*a*b* пока мало используется в видеосъемке, но широко распространено в текстильной промышленности и в полиграфии. Использование этого пространства дополняется возможностями вычислений, возникшими с прогрессом в области информатики. Многие вычисления производятся сначала в системе МКО XYZ, а затем переводятся в систему МКО LAB. Так как уравнения кодирования видеоинформации основаны на пространстве XYZ, то использование этого пространства, а также производных Yxy и Yu’v’ часто остается более простым.

 

Рис.5.25. Оценка изохроматических зон в пространстве МКО L*а*b*

 

 

5.7 Пространство МКО L*, u*, v*

В 1976 году МКО создала пространство L*, u*, v*, отличное от пространств МКО LAB, L, u, v и L, u', v'. Однако оно напрямую связано с пространствами МКО XYZ и L, u', v.

Допустим, что уравнения идентичны уравнениям в системе L, u', v'

Мы получаем:

— это трихроматические координаты белой точки.

Это пространство зависит от данного стандартного источника света (от белой точки). Плюсом этого пространства является возможность сохранения линейных функций (основанных на прямых линиях) на диаграмме цветностей. Тогда как система МКО LAB предназначена для цветов, нанесенных на основу и на различ­ные красители, пространство МКО LUV было разработано главным образом для цветовых систем, в которых изменения яркости являются важным параметром: например, для видеоэкранов.

 

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...