Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Экспериментальный метод Галилея

Если натурфилософы со времен Аристотеля считали, что ни одно тело не переходит из состояния покоя в движение без действия силы, а всякое движение может прекратиться само собой, то Галилей, в открытом им законе инерции, установил равноправие покоя и равномерного прямолинейного движения, показав, что ни одно тело не может изменить своей скорости (ни ее величину, ни направление) без действия силы. Закон инерции не опирается на повседневный опыт, он сформулирован на основе мысленного эксперимента с идеализированными объектами. Этот закон открыт чисто теоретическим путем. Натурфилософы Древней Греции стали первыми теоретиками в понимании естественного единства мира в целом; Галилей первым возвел механику на уровень теоретической науки.

Одной из самых важных заслуг Галилея в истории науки является установление и разработка им нового экспериментального метода познания природы, предполагающий активную деятельность естествоиспытателя, направленную на постановку специальных экспериментов. Экспериментальный метод Галилея предполагает этапы: установление гипотез на основе данных наблюдений и опытов, вывод следствий из гипотез, экспериментальная проверка следствий, подтверждающих гипотезу и превращающих ее в научный закон (рис. 2.2).

Рис.2.2. Экспериментальный метод Галилея.

Первым достижением экспериментального метода Галилея было открытие закона свободного падения тел. В XVII в. экспериментальный метод Галилея становится основным научным методом познания природы, что означало начало становление физики как самостоятельной науки и – естествознаниякак системы естественных наук.

От здравого смысла через эксперимент к идеализациям, а от них к теории, проверяемой на практике, таков путь физики к научному познанию движения тел.

2.6.3. Становление физики как самостоятельной науки

Научная революция XVI–XVII вв. обусловила становление физики как самостоятельной науки – следующую после астрономии и статики ступень процесса выделения естественных наук из философии. Становление физики как самостоятельной науки сопровождалось развитием экспериментального метода познания природы, заложенного Галилеем, и выдающимися достижениями в области механики, оптики, физики жидкостей и газов.

В период становления физики как самостоятельной науки была создана теория маятника (Галилей, Гюйгенс), разработана теория вращательного движения (Гюйгенс). Теоретическая разработка проблемы маятника имела прямую связь с решением практической задачи измерения времени: свойство маятника сохранять постоянный период колебаний, открытое Галилеем, сразу натолкнуло на мысль применить маятник для измерения времени. Галилеем был составлен чертеж проекта маятниковых часов, однако, из-за смерти Галилея проект не был осуществлен. Разработка и осуществление практически пригодных часов принадлежит голландскому ученому Х. Гюйгенсу (1629–1695). В 1657 г. Гюйгенс запатентовал изобретенные им часы с маятником. Одновременно он разработал теорию маятника. Гюйгенс разработал также теорию вращательного движения для материальной точки, равномерно движущейся по окружности.

В период становления физики как самостоятельной науки был установлен закон преломления света. Впервые этот закон был экспериментально установлен голландским ученым Снеллиусом (1580–1626) на границе воздух – вода, однако, Снеллиус не дал его современной формулировки. Позднее этот закон в уже современной формулировке был опубликован Декартом в сочинении "Диоптрика" (1637). Декарт вывел этот закон теоретически, исходя из постулатов о различной скорости света в средах с различной плотностью. Открытие закона преломления света давало возможность приступить к количественному расчету оптических систем. В дальнейшем была получена формула линзы и развиты основы теории оптических систем. В этот же период были открыты явления интерференции и дифракции света. Эти явления были впервые описаны итальянским ученым Ф. Гримальди (1618–1663) в его труде "Физико-математические рассуждения о свете, цветах и радуге" (1665). Гримальди наблюдал, что если на пути пучка света, проходящего через отверстие в ставне, поставить стержень, то на экране тень получается размытой. Этому явлению Гримальди дал название дифракции (раздробление). Другой опыт, описанный Гримальди, заключался в следующем. Свет пропускался через два узких отверстия в ставне, расположенных близко друг к другу, так что на экране два конуса лучей накладывались друг на друга. Рассматривая картину на экране, Гримальди пришел к выводу, что "прибавление света к свету" (интерференция) может привести к уменьшению его интенсивности.

В период становления физики как самостоятельной науки было создано учение об атмосферном давлении (Торричелли, Паскаль). В 1603 г. Э. Торричелли (1608–1647) провел первый опыт с трубкой, наполненной ртутью и пришел к заключению о возможности существования пустоты, а также измерил величину атмосферного давления. Позже Декарт высказал мысль, что атмосферное давление должно уменьшаться с высотой и что это можно проверить, подняв барометр в гору. Такой опыт проделал Б. Паскаль (1623–1663) и установил, что, действительно, высота ртутного столба с подъемом уменьшается. Опыты Торричелли-Паскаля привели к изобретению нового прибора – барометра, который начал применяться в метеорологических исследованиях.

Революция в математике

В конце ХVII в. произошла революция в математике. Английский ученый И. Ньютон (1643–1727) и независимо от него немецкий математик и философ Г. Лейбниц (1646–1716) разработали принципы интегрального и дифференциального исчисления. Эти исследования стали основой математического анализа и математической базой всего современного естествознания. Еще раньше, в середине ХVII в. трудами Р. Декарта (1596–1650) и П. Ферма (1601–1665) были заложены основы аналитической геометрии, что позволило переводить геометрические задачи на язык алгебры с помощью метода координат.

Дифференциальное исчисление дало возможность математически описывать не только устойчивые состояния тел, но и текущие процессы, не только покой, но и движение. В этот период господствующим стал аналитический метод познания процессов, в основе которого – расчленение целого для отыскания неизменных основ этих процессов.

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...