Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Галактики и структура Вселенной

Галактики – это скопления звезд, связанных вместе гравитационным притяжением. Астрономы разделяют галактики на спиральные, эллиптические, и неправильной формы. Наше Солнце входит в спиральную Галактику (пишется с большой буквы, в отличие от всех прочих галактик с маленькой буквы), называемую Млечным путем и являющуюся лишь одной из сотен миллиардов галактик, которые можно увидеть с помощью современных телескопов; каждая галактика состоит из сотен миллиардов звезд. Звезды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего, они участвуют во вращении Галактики вокруг оси, перпендикулярной ее экваториальной плоскости. Различные участки Галактики имеют различные периоды обращения.

Звезды удалены друг от друга на огромные расстояния и тем самым практически изолированы друг от друга. Это означает, что звезды практически не сталкиваются друг с другом, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами Галактики. Из расчетов следует ожидать одно столкновение в каждый миллион лет, в то время как в "нормальных" областях Галактики за всю историю эволюции нашей звездной системы, насчитывающую, по крайней мере, 10 млрд. лет, столкновений между звездами практически не было.

Число звезд в Галактике порядка триллиона. Самые многочисленные из них – карлики, массы которых примерно в 10 раз меньше массы Солнца. Кроме одиночных звезд и их спутников (планет), в состав Галактики входят двойные и кратные звезды, а также группы звезд, связанных силами тяготения и движущиеся в пространстве как единое целое, – звездные скопления. Существуют рассеянные звездные скопления, например Плеяды в созвездии Тельца. Такие скопления не имеют правильной формы; в настоящее время их известно более тысячи.

Наблюдаются шаровые звездные скопления, например, в созвездии Геркулеса. Если в рассеянных скоплениях содержатся сотни или тысячи звезд, то в шаровых их сотни тысяч. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет. В настоящее время известно около 150 шаровых скоплений. В различных созвездиях обнаруживаются туманные пятна, которые состоят в основном из газа и пыли, – это туманности, они тоже входят в состав нашей Галактики. Туманности неправильной, клочковатой формы называют диффузными, а те, которые, имеют правильную форму и напоминают по виду планеты, – планетарными.

Существуют еще светлые диффузные туманности, например, большая газопылевая туманность в созвездии Ориона. Интересна небольшая диффузная туманность, названная Крабовидной за свою необычную сетку из ажурных газовых волокон. Это источник не только оптического излучения, но и радиоизлучения, рентгеновских и гамма-квантов. В центре Крабовидной туманности находится источник импульсного электромагнитного излучения – пульсар, у которого впервые были обнаружены наряду с пульсациями радиоизлучения оптические пульсации блеска и пульсации рентгеновского излучения. Пульсар, обладающий мощным переменным магнитным полем, ускоряет электроны и вызывает свечение туманности в различных участках спектра электромагнитных волн.

Но даже там, где не видно ни звезд, ни туманностей, пространство не пусто. Оно заполнено очень разреженным межзвездным газом и межзвездной пылью. В межзвездном пространстве существуют и различные поля (гравитационное и магнитное). Пронизывают межзвездное пространство и космические лучи, представляющие собой потоки электрически заряженных частиц, которые при движении в магнитных полях разогнались до скоростей, близких к скорости света, и приобрели огромную энергию.

В начале ХХ в. было доказано, что некоторые туманные пятна, видимые в телескоп на разных участках неба, находятся вне нашей Галактики и представляют собой другие галактики, каждая из которых, подобно нашей, состоит из многих миллиардов звезд.

Мир галактик поражает своим разнообразием. Галактики резко различаются размерами, числом входящих в них звезд, светимостями, внешним видом. Их обозначают номерами, под которыми вносят в каталоги.

Как уже упоминалось, по внешнему виду галактики условно разделяются на три типа: эллиптические, спиральные и неправильные. Пространственная форма эллиптических галактик – эллипсоиды с разной степенью сжатия. Среди них встречаются гигантские и карликовые. Почти четверть всех изученных галактик относится к эллиптическим. Это наиболее простые по структуре галактики. Распределение звезд в них равномерно убывает от центра, пыли и газа почти нет. В них самые яркие звезды – красные гиганты.

Спиральные галактики – самый многочисленный вид. К нему относятся, например, наша Галактика и Туманность Андромеды, удаленная от нас примерно на 2,5 млн. световых лет.

Неправильные галактики не имеют центральных ядер, в их строении пока не обнаружены закономерности. Это Большое и Малое Магеллановы облака, являющиеся спутниками нашей Галактики. Они находятся сравнительно недалеко от нас, на расстоянии, всего лишь в полтора раза большем диаметра Галактики. Магеллановы облака значительно меньше нашей Галактики по массе и размерам.

Существуют и взаимодействующие галактики. Они обычно находятся на небольших расстояниях друг от друга, связаны "мостами" из светящейся материи, иногда как бы пронизывают одна другую.

Некоторые галактики обладают исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики. Например, галактика Лебедь А. В отличие от нашей и других "нормальных" галактик, Лебедь А излучает в радиодиапазоне энергии больше, чем в оптическом диапазоне.

Радиоизлучение межзвездной среды вызвано различными причинами. Радиоволны излучает находящийся в межзвездном пространстве ионизированный горячий газ. Нагрев и ионизацию газа (преимущественно водорода) вызывают горячие звезды и космические лучи. Другой источник радиоизлучения – нейтральный водород, которого в межзвездном пространстве значительно больше, чем ионизированного.

С 1963 г. начались открытия звездоподобных источников радиоизлучения – квазаров. Сейчас их открыто более тысячи. Самый яркий квазар (обозначаемый как ЗС 273) виден как звезда. Этот квазар, находящийся от нас на расстоянии около 3 млрд. световых лет, излучает больше энергии в оптическом диапазоне, чем самые яркие галактики. Кроме того, этот квазар оказался одним из самых мощных источников рентгеновского излучения.

Мир галактик очень разнообразен: он далеко не исчерпывается спиральными, эллиптическими и неправильными галактиками. Некоторым галактикам свойственны различные проявления активности, включая взрывные процессы в ядрах галактик. Мы еще далеко не все знаем о Метагалактике – охваченной астрономическими наблюдениями части Вселенной. Огромная удаленность объектов создает совершенно специфические трудности, которые разрешаются в результате применения самых мощных средств наблюдения в сочетании с глубокими теоретическими исследованиями.

Солнечная система

Жесткой границы, разделяющей микро- , макро- и микромиры, не существует. При несомненном качественном различии они связаны конкретными процессами взаимопереходов. Наша Земля представляет макромир. Но в качестве одной из планет Солнечной системы она одновременно выступает и как элемент мегамира.

В Солнечную систему входят 9 планет, их спутники, свыше 100 тыс. астероидов, множество комет и метеоритных тел. Расстояние от Солнца до наиболее удаленной планеты Плутона 6 млрд. км. Различают планеты земной группы и планеты-гиганты. Планеты земной группы – Меркурий, Венера, Земля, Марс – сравнительно невелики и состоят из плотного вещества. Юпитер, Сатурн, Уран, Нептун и Плутон относятся к гигантам, они гораздо массивнее, но в их состав входят легкие вещества и поэтому их плотность меньше. В отличие от атмосферы планет земной группы, четко отделенных от твердой поверхности, атмосферные газы планет-гигантов постепенно переходят в конденсированное состояние, в “тело” самих планет. У них нет привычной нам твердой или жидкой поверхности.

Входящие в Солнечную систему астероиды представляют собой малые планеты. Хотя их много, но суммарная их масса оказывается меньше 0,001 массы Земли. Самый крупный астероид – планета Церера – имеет поперечник около 1000 км. Сталкиваясь друг с другом, астероиды дробятся на метеориты.

Своеобразными объектами Солнечной системы являются кометы. Они состоят из головы, небольшого плотного ядра и хвоста длиной в десятки миллионов километров. Ядра комет имеют размеры в несколько километров и состоят из каменных и металлических образований, заключенных в ледяную оболочку из замерзших газов. Кометы обычно –это самые дальние объекты Солнечной системы. Некоторые из них удаляются от Солнца на 10 000 млрд. км – на расстояние одного светового года, т.е. расстояние, которое свет со скоростью 30 0000 км/с проходит за один год (1 световой год = 10 000 млрд. км = 1013 км). Считается, что на этом удалении от Солнца и проходит граница Солнечной системы. Далее начинается сфера влияния других звезд. Для сравнения: свет от Солнца до Земли доходит за 8 мин, а от второй по близости к нам звезды (Проксима Центавра) свет идет к Земле более четырех лет. Эта звезда находится от нас в 100 000 раз дальше, чем Солнце.

Концепция расширения Вселенной

Современная космология возникла в начале ХХ в. Важное значение для развития космологии имело создание общей теории относительности. Первым попробовал применить эту теорию к объяснению строения мира сам Эйнштейн (1917). Введя в гравитационные уравнения произвольную космологическую постоянную, он получил модель статической, т.е. неизменной во времени Вселенной с конечным радиусом. В 1920–1922 гг. советским ученым Фридманом было предложено иное решение гравитационных уравнений Эйнштейна, при котором необходимость в космологической постоянной отпадала. Согласно Фридману, Вселенная нестационарна, т.е. изменяется во времени. Как один их возможных вариантов нестационарности рассматривалось расширение, при котором галактики удаляются друг от друга.

Существуют три модели, для которых справедливо решение гравитационных уравнений, полученных Фридманом:

1 – Вселенная расширятся достаточно медленно, так что в силу гравитационного притяжения происходит замедление и прекращение расширения, заменяющееся сжатием;

2 – расширение Вселенной происходит так быстро, что гравитационное притяжение не может его остановить;

3 – скорость расширения Вселенной мала, ее достаточно только для того, чтобы избежать сжатия до нуля (коллапса).

Созданию современной картины Вселенной во многом способствовали исследования американского астронома Э. Хаббла (1889–1953), показавшего в 1924 г., что наша Галактика не единственная, а существует множество других галактик, разделенных огромными областями пустого пространства. Доказав существование других галактик, Хаббл все последующие годы посвятил составлению каталогов расстояний до этих галактик и наблюдению их спектров. В 1929 г. Хаббл установил, что свет, идущий от далеких галактик, смещается в красную сторону спектра. Это явление, известное как красное смещение, согласно эффекту Доплела, свидетельствовало об удалении галактик от наблюдателя.

Хаббл обнаружил также, что величина красного смещения не случайна, а прямо пропорциональна расстоянию от нас до галактики. Таким образом, было установлено, что Вселенная не является статической, а расширяется. Открытие Хаббла подтвердило правильность выводов Фридмана о расширении Вселенной. Открытие расширения Вселенной было одним из великих интеллектуальных переворотов XX в.

Модели Фридмана явились основой всего последующего развития космологии. Они описывают механическую картину движения огромных масс Вселенной и ее глобальную структуру и являются по своей сути эволюционными, связывающими сегодняшнее состояние Вселенной с ее предыдущей историей. В частности, из этой теории следует, что в далеком прошлом Вселенная была совсем не похожа на наблюдаемую нами сегодня. Тогда не было ни отдельных небесных тел, ни их систем, все вещество было почти однородным, очень плотным, быстро расширялось. Только значительно позже из такого вещества возникли галактики и их скопления.

Открытие расширения Метагалактики свидетельствует о том, что в прошлом она была не такой, как сейчас, и иной станет в будущем, т.е. Метагалактика развивается.

Начиная с конца 40-х годов нашего века, все большее внимание в космологии привлекает физика процессов на разных этапах космологического расширения. В выдвинутой в это время Г.А. Гамовым (1904–1968) теории горячей Вселенной рассматривались ядерные реакции, протекавшие в самом начале расширения Вселенной в очень плотном веществе. При этом предполагалось, что температура вещества была велика и падала с расширением Вселенной. Теория предсказывала, что вещество, из которого формировались первые звезды и галактики, должно состоять в основном из водорода (75%) и гелия (25%), примесь других химических элементов незначительна. Другой вывод теории – в сегодняшней Вселенной должно существовать слабое электромагнитное излучение, оставшееся от эпохи большой плотности и высокой температуры вещества. Такое излучение в ходе расширения Вселенной было названо реликтовым излучением.

К тому времени появились принципиально новые наблюдательные возможности в космологии: возникла радиоастрономия, расширились возможности оптической астрономии. Сейчас Вселенная вплоть до расстояний в несколько парсек исследуется разными методами. В 1965 г. экспериментально наблюдалось реликтовое излучение. Это открытие подтвердило справедливость теории горячей Вселенной.

Эволюция Вселенной

Современный этап в развитии космологии характеризуется интенсивным исследованием проблемы начала космологического расширения, когда плотности материи и энергии частиц были огромными. Руководящими идеями являются новые открытия в физике взаимодействия элементарных частиц при очень больших энергиях. При этом рассматривается глобальная эволюция Вселенной. Сегодня эволюция Вселенной всесторонне обосновывается многочисленными астрофизическими наблюдениями, имеющими под собой прочный теоретический базис всей физики.

Эволюцию претерпевают все космические объекты – звезды, планеты, галактики. Сейчас известно, что обычные звезды в ходе претерпеваемых изменений превращаются в так называемые “белые карлики”, “нейтронные звезды” и “черные дыры”.

Что такое “белый карлик”? Это электронная постзвезда, образующаяся в том случае, когда звезда на последней стадии своей эволюции имеет массу, меньшую 1,2 солнечной массы. Превращение происходит путем медленного сжатия звезды, которая продолжает светить уже не за счет ядерных реакций, а в результате освобождающейся в процессе сжатия гравитационной энергии. Диаметр “белого карлика” равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность – 10 т/см3 – в сотни тысяч раз больше земной плотности. Такую плотность можно получить, утрамбовав грузовой автомобиль в объем наперстка. В течение 1 млрд. лет “белый карлик” медленно остывает, превращаясь в “черный карлик” – ничего не излучающую “мертвую” звезду.

Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. В этом случае на предконечном этапе происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурный процесс ядерных реакций, в которые вступают остатки ядерного вещества звезды. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Остаток звезды уменьшается до размеров в 20 – 30 км, а средняя ее плотность возрастает до 100 млн. т/см3, что, используя прежнее сравнение, равнозначно утрамбовке в наперсток миллиона грузовых автомобилей. Образующийся объект и получил название “нейтронная звезда”. Она состоит из протонов и нейтронов, силы гравитации разрушили в ней сложные ядра и вещество снова стало состоять из отдельных элементарных частиц. Открытые в 1967 г. пульсары (источники пульсирующего, периодически изменяющегося импульсного излучения) как раз и являются намагниченными вращающимися нейтронными звездами.

В случае же, если масса постзвезды (звезды на заключительной стадии своего существования) превысит 2 солнечные массы, она должна превратиться в "черную дыру" с радиусом 5–10 км. Черные дыры имеют и другие названия: “застывшая звезда”, “гравитационная могила”, “коллапсар” и т.д. Пространство черной дыры как бы “вырвано” из пространства Метагалактики. Если вырезать в листе бумаги дыру, то это даст наглядную двумерную аналогию черной дыры в трехмерном пространстве. Вещество и излучение проваливаются в нее и не могут выйти обратно.

Раньше “черные дыры” считались ненаблюдаемыми. Теперь же наука располагает фактами, которые достаточно убедительно свидетельствуют об их существовании. Они отождествляются с источниками сильного рентгеновского излучения. Высказаны предположения о существовании первичных, реликтовых “мини-черных дыр”, образовавшихся на раннем этапе развития Вселенной. Реликтовые черные дыры вызывают исключительный интерес, поскольку в них органически объединяются микро- и макромасштабы. Теоретические расчеты показывают, что обладая гигантской массой 1015 г, они должны иметь микроскопический размер до 10-13 см.

Концепция большого взрыва

Открытие расширения Вселенной поставило перед наукой вопрос о возникновении Вселенной, одним из возможных вариантом решения которого явилась концепция Большoго Взрыва.

Концепция Большого Взрыва – распространенное в настоящее время представление о происхождении Вселенной, согласно которому Вселенная возникла в результате Большого Взрыва, который с позиций общей теории относительности трактуется как точка пространства-времени с бесконечной кривизной. Концепция Большого Взрыва подтверждена математическим доказательством существования точки Большого Взрыва, проведенным известными физиками-теоретиками нашего времени Д. Пенроузом и С. Хокингом в 1970 г. на основе гравитационных уравнений общей теории относительности.

Все варианты модели Фридмана расширения Вселенной имеют то общее, что в какой-то момент времени в прошлом расстояние между соседними галактиками должно было равняться нулю, т.е. независимо от его природы, расширение должно было начаться в некоторый момент времени, когда плотность вещества была бесконечно большой. Эта особая точка в математике называется сингулярностью и интерпретируется как Большой Взрыв. Существование этой точки составляет содержание теоремы о сингулярности, доказанной Пенроузом и Хокингом. Из их доказательства следует также, что общая теория относительности представляет собой неполную теорию, в ней нет ответа на вопрос, как возникла Вселенная, потому что в точке Большого Взрыва нарушаются все физические теории, в том числе и общая теория относительности.

Ответ на этот вопрос должна дать квантовая теория гравитации, учитывающая мелкомасштабные эффекты на ранней стадии развития Вселенной. В настоящее время последовательной теории квантовой гравитации пока еще нет.

На качественном уровне концепцию Большого Взрыва можно пояснить следующим образом. Около 20 млрд. лет тому назад все галактики, судя по всему, были сосредоточены в одной точке, из которой началось стремительное расширение Вселенной до современных размеров. Но где же находится эта точка? Ответ: нигде и в то же время повсюду; указать ее местоположение невозможно, это противоречило бы основному принципу космологии. Еще одно сравнение, возможно, поможет понять это утверждение. Согласно общей теории относительности, присутствие вещества в пространстве приводит к его искривлению. При наличии достаточного количества вещества можно построить модель искривленного пространства. Передвигаясь по земле в одном направлении, мы в конце концов, пройдя 40000 км, должны вернуться в исходную точку. В искривленной Вселенной случится то же самое, но спустя 40 млрд. световых лет.

Итак, Вселенная напоминает надувной шарик, на котором нарисованы галактики и, как на глобусе, нанесены параллели и меридианы для определения положения точек; но в случае Вселенной для определения положения галактик необходимо использовать не два, а три измерения. Расширение Вселенной напоминает процесс надувания этого шарика: взаимное расположение различных объектов на его поверхности не меняется, на шарике нет выделенных точек. Чтобы оценить полное количество вещества во Вселенной, нужно просто подсчитать все галактики вокруг нас. Поступая таким образом, мы получим вещества меньше, чем необходимо, чтобы, согласно Эйнштейну, замкнуть "воздушный шарик" Вселенной. Существуют модели открытой Вселенной, математическая трактовка которых столь же проста и которые объясняют нехватку вещества. С другой стороны, может оказаться, что во Вселенной имеется не только вещество в виде галактик, но и невидимое вещество в количестве, необходимом, чтобы Вселенная была замкнута; полемика по этому поводу до сих пор не затихает.

Спустя миллиард лет после Большого Взрыва началось образование галактик. К этому моменту вещество уже успело охладиться, и стали появляться стабильные флуктуации плотности среди облаков газа, равномерно заполнявших космос. Локальное увеличение плотности вещества оказывается стабильным, если плотность достаточно велика, так как в этом случае создается локальное гравитационное поле, способствующее сохранению вещества в сжатом виде. Продолжая сжиматься и теряя при этом энергию на излучение, уплотнившееся вещество в результате своей эволюции превращалось в современные галактики. Хотя в общих чертах ясно, что тогда происходило, но механизм образования галактик все же понят не до конца и противоречит аккуратным подсчетам наблюдаемых масс галактик и их скоплений.

Принципы организации микромира

Понятия и принципы классической физики оказались неприменимыми к исследованию физических свойств мельчайших частиц материи или микрообъектов, таких как электроны, протоны, нейтроны, атомы и подобные им объекты, которые образуют невидимый нами микромир, и поэтому свойства объектов этого мира совершенно не похожи на свойства объектов привычного нам макромира и далекого мегамира (планеты, звезды, кометы, квазары и другие небесные тела).

Открытие сложного строения атома и попытки создания адекватных моделей для его описания привели к необходимости отказа от привычных представлений, которые навязаны нам предметами и явлениями окружающего нас макромира. Поиски новых понятий и методов описания микрообъектов способствовали возникновению квантовой механики, созданной трудами многих выдающихся ученых, прежде всего – Л. де Бройля (1892–1987), Э. Шредингера (1887–1961), В. Гейзенберга (1901–1976), М. Борна (1882–1970).

Квантовая механика является областью физики, возникшей в связи с необходимостью разработки нового подхода к явлениям микромира, необъяснимым с позиций механики Ньютона. В основе квантовой механики лежат представления Планка, согласно которым излучение энергии веществом происходит малыми порциями – квантами с энергией, пропорциональной частоте испускаемого излучения, гипотеза де Бройля о волновых свойствах частиц вещества, соотношение неопределенностей Гейзенберга. В квантовой механике вводится понятие волновой функции Y(x,y,z,t), определяющей вероятность нахождения микрочастицы в данном месте пространства в данное время. Основным уравнением квантовой механики является уравнение Шредингера, определяющее вид функции Y(x,y,z,t).

Развитие концепции атомизма

Представление об атомах как неделимых частицах вещества возникло в глубокой древности. Атомистическое учение появилось в античной Греции в V в. до нашей эры в рамках натурфилософии и было представлено выдающимися философами древности – Эмпедоклом, Демокритом, Эпикуром, учившими, что мир состоит из пустоты и атомов, а различные комбинации атомов образуют видимые тела. Эта гипотеза являлась лишь гениальной догадкой, но, тем не менее, она определила на многие столетия вперед все дальнейшее развитие естествознания. В средние века учение об атомах, будучи материалистическим учением, не получило признания. Лишь к началу XVIII в., в естествознании и, прежде всего, в физике и химии, возвращаются к идеям атомистики для объяснения эмпирических законов идеальных газов и теплового расширения тел. В работах выдающегося французского химика А. Лавуазье (1743–1794), великого русского ученого М.В. Ломоносова (1711–1765) и английского химика и физика Д. Дальтона (1766–1844) была доказана реальность атомистического подхода к объяснению естественнонаучных законов. Однако в это время вопрос о внутреннем строении атома даже не возникал, так как атомы считались неделимыми. Вплоть до конца прошлого столетия большинство ученых рассматривало атом как последнюю неделимую частицу вещества, но крупнейшие открытия в физике привели к отказу от такой точки зрения.

Открытие Д.И. Менделеевым (1834–1907) в 1869 г. периодического закона подтолкнуло ученых к выводу о существовании более мелких частиц, свойства которых обусловливают свойства атомов, в том числе и периодический закон их взаимосвязи и явилось одним из руководящих положений, использованных при создании теории строения атома. Среди открытий, показавших сложность строения атома, следует отметить, во-первых, обнаружение явлений естественной радиоактивности таких химических элементов, как радий и уран. Оказалось, что эти элементы в естественных условиях испускают специфические, радиоактивные лучи и в результате превращаются в другие более легкие химические элементы. Вслед за радиоактивностью последовало открытие электрона в 1897 г. английским физиком Дж. Томсоном (1856–1940), показавшее, что существуют частицы еще более мелкие, чем атомы, и, по-видимому, являющиеся составной частью атома. (По современным воззрениям электрон обладает наименьшим электрическим зарядом, т.е. является мельчайшей частицей электричества).

Изучение строения атома практически началось в 1897–1898 гг., после того, как были определены величина и масса электрона. Томсон предложил первую модель строения атома, согласно которой атом – это сгусток материи, обладающий положительным электрическим зарядом, в который вкраплено столько электронов, что в целом атом является электронейтральным. В этой модели предполагалось, что под влияние внешних воздействий электроны могли совершать колебания, т.е. двигаться ускоренно. Казалось бы, это позволяло ответить на вопросы об излучении света атомами вещества и гамма-лучей атомами радиоактивного веществ. Слабым местом модели атома Томсона было то, что в ней не предполагалось положительно заряженных частиц внутри атома и, следовательно, открытым оставался вопрос об испускании положительно заряженных альфа-частиц радиоактивными веществами. Модель Томсона не давала ответа и на ряд других вопросов.

Положительно заряженная часть атома была открыта в 1911 г. английским физиком Э. Резерфордом (1871–1937) при исследовании движения альфа-частиц в газах и других веществах. Альфа-частицы, выбрасываемые атомами радиоактивных элементов, представляют собой положительно заряженные ионы гелия, способные ионизировать воздух. При движении с огромной скоростью порядка 20000 км/с альфа-частицы выбивают из молекул, входящих в состав воздуха, электроны, которые присоединяются к другим молекулам, заряжая их отрицательно. Молекулы, потерявшие электроны, становятся положительно заряженными. Способность альфа-частиц ионизировать воздух была использована английским физиком Ч. Вильсоном, чтобы сделать видимым пути движения отдельных частиц и сфотографировать их. (Впоследствии прибор для фотографирования альфа-частиц был назван камерой Вильсона). Тщательное исследование траекторий альфа-частиц обнаружило их рассеяние – отклонение от их первоначального пути. Причем, некоторые частицы отбрасываются назад, так как если бы на их пути бала частица, с массой того же порядка и положительным зарядом.

Исходя из этих данных, Резерфорд предложил планетарную модель строения атома: в центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны, суммарный заряд которых уравновешивает заряд ядра. Так, если масса электрона ничтожно мала, то почти вся масса атома сосредоточена в его ядре. Размеры ядра и электронов чрезвычайно малы по сравнению с размерами всего атома, которые определяются орбитами наиболее удаленных от ядра электронов. Поэтому большинство альфа-частиц пролетает через атом без заметных отклонений и только в тех случаях, когда альфа-частица близко подходит к ядру, она отталкивается от него, резко меняя свою первоначальную траекторию. Таким образом, рассеяние альфа-частиц положило начало развитию представлений об атомном ядре.

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...