Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Развитие химии экстремальных состояний

Как мы уже знаем из рассмотрения каталитических реакций, под действием катализатора происходит ослабление исходных химических связей. Подобное действие можно ожидать при тепловом или радиационном воздействии, приводящем к повышению реакционной способности веществ и ускорению хода реакций. Вопросами энергетической активизации реагента занимается химия экстремальных состояний, которая включает плазмохимию, радиационную химию, химию высоких энергий, химию высоких давлений и высоких температур.

Плазмохимия изучает процессы в низкотемпературной плазме. В плазмохимии рассматриваются процессы при температурах от +1000°C до +10000°С . Такие процессы характеризуются возбужденным состоянием частиц, столкновениями молекул с заряженными частицами и, что особенно важно, очень высокими скоростями реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока: длительность элементарных актов химических превращений составляет около 10–13с при почти полном отсутствии обратимости реакции. Метановый плазмотрон с производительностью 75 т ацетилена в сутки имеет сравнительно крохотные размеры: длину 65 см и диаметр 15 см. Такой плазмотрон заменяет целый огромный завод. При температуре +З000¼3500°C  за одну десятитысячную долю секунды 80% метана превращается в ацетилен. Степень использования энергии достигает 90–95%, а энергозатраты составляют не более 3 кВт× ч на 1 кг ацетилена.

Относительно недавно – в 1970-х годах – созданы плазменные сталеплавильные печи, выдающие высококачественный металл. Именно таким печам принадлежит будущее. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается в несколько раз.

Плазмохимия позволяет синтезировать такие ранее неизвестные материалы, как металлобетон, в котором в качестве связующего используется сталь, чугун, алюминий. При сплавлении частиц горной породы благодаря прочному сжатию их с металлом образуется металлобетон, превосходящий по прочности обычный бетон на сжатие в 10 раз и на растяжение в 100 раз.

Радиационная химия – сравнительно молодая отрасль, ей немного более 40 лет. Первые опыты радиационной химии были связаны с облучением полиэтилена гамма-лучами. Прочность полиэтилена при этом существенно возросла. В настоящее время радиационная химия изучает превращение самых разнообразных веществ под действием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы.

Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе композиций на древесной основе, закрепление лаков и других материалов на поверхности дерева и металла, получение полимербетонов путем пропитки обычного бетона тем или иным мономером с последующим облучением. Такие бетоны имеют в четыре раза более высокую прочность, обладают водонепроницаемостью и высокой коррозийной стойкостью.

Принципиально новой и исключительно важной областью химии экстремальных состояний является самораспространяющийся высокотемпературный синтез тугоплавких и керамических материалов. Обычно крупномасштабное производство таких материалов осуществляется методом порошковой металлургии, суть которого заключается в прессовании и сжатии при высокой температуре металлических порошков. При этом температура должна составлять +1200¼2000°C , а процесс спекания длится несколько часов. Гораздо проще реализуется самораспространяющийся синтез, основанный на реакции горения одного металла в другом или металла в азоте, углероде, кремнии и т.п. Чаще всего процесс горения представляется в виде соединения кислорода с горючим веществом: углем, нефтепродуктами, древесиной. В химии принято считать горение реакцией окисления горючего вещества, что с позиции окислительно-восстановительных реакций означает перемещение электронов от атомов восстановителя горючего тела к атомам окислителя кислорода. С этой точки зрения горение возможно не только в кислороде, но и в других окислителях.

Самораспространяющийся высокотемпературный синтез – тепловой процесс горения в твердых телах. Он представляет собой, например, горение порошка титана в порошке бора или порошка циркония в порошке кремния. В результате такого синтеза получены сотни тугоплавких соединений превосходного качества: карбиды металлов, бориды, алюминиды, селениды.

Особенности биологического уровня организации материи

Познание сущности жизни – одна из основных задач естествознания. Дать научное определение жизни, указать принципиальное отличие живого от неживого очень сложно. Эта задача требует выяснения вопроса, в чем же именно заключается более высокое качество биологической формы существования материи, что приводит к поискам свойств, присущим живым телам и отсутствующих у неживых, выяснению особенностей эволюции, воспроизводства и развития живых систем.

Свойства живых систем

По современным представлениям живой организм – это открытая, самообновляемая, саморегулируемая, самовоспроизводящаяся система, построенная из биополимеров и проходящая путь необратимого развития. Рассмотрим общие, характерные для всех живых организмов свойства и их отличия от похожих процессов, протекающих в неживой природе.

Самообновление – свойство живых организмовосуществлять непрерывный обмен с окружающей средой энергией и веществом, благодаря которому происходит восстановление разрушенных компонентов и замена их новыми, подобными им. Живой организм использует внешние источники энергии (свет, пищу). Через живые системы, таким образом, проходят потоки веществ и энергии, поэтому они называются открытыми. Обмен веществ состоит из двух взаимосвязанных процессов – ассимиляции и диссимиляции. Ассимиляция – это процесс синтеза органических веществ в организме, а диссимиляция – процесс распада сложных органических веществ с выделением энергии. Отметим, что в неживой природе также существует обмен веществами. Однако в небиологическом круговороте вещества просто переносятся с одного места на другое или изменяют агрегатное состояние.

Саморегуляция – способность живых организмов, обитающих в непрерывно изменяющихся условиях окружающей среды, поддерживать постоянство своего химического состава и интенсивность течения физиологических процессов. Саморегуляцией в организмах поддерживается постоянство структурной организации – гомеостаз (от гр. homoios – равный, неизменный, stasis – состояние). Для всех живых существ характерно наличие механизмов, поддерживающих постоянство внутренней среды. Продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составляют начальное звено в длинной цепи реакций. По принципу обратной связи регулируются процессы обмена веществ, репродукции, считывания наследственной информации.

Самовоспроизведение – свойство живых организмов воспроизводить себе подобных, основанное на способности молекул ДНК передавать из поколения в поколение наследственную информацию о признаках, свойствах и функциях организмов. Благодаря этой способности не прекращается существование вида. В основе самовоспроизведения лежат реакции матричного синтеза, т.е. образования новых молекул и структур на основе информации, заложенной в структуре молекул ДНК.

Наследственность – свойство живого организма, тесно связанное с самовоспризведением и заключающееся в способности живого организма передавать свои признаки и свойства, а также особенности развития из поколения в поколения.

Изменчивость – способность организма приобретать новые признаки и свойства.

Развитие – необратимое направленное закономерное изменение живых организмов, в результате которого возникает новое качественное состояние, изменяется его состав и структура. Развитие живых организмов представлено индивидуальным развитием или онтогенезом, и историческим развитием или филогенезом. Онтогенез – это вся совокупность преобразований организма от момента его зарождения до прекращения существования. На протяжении онтогенеза постепенно и последовательно проявляются индивидуальные свойства организмов. Развитие их сопровождается ростом. Филогенез, или эволюция, – это необратимое и направленное развитие живой природы, сопровождающееся образованием новых видов и прогрессивным усложнением жизни. Результатом эволюции является все многообразие живых организмов на Земле.

Раздражимость – неотъемлемая черта, свойственная всему живому, являющаяся выражением одного из общих свойств всех тел природы – свойства отражения. Раздражимость связана с передачей информации из внешней среды любой биологической системе (организм, орган, клетка) и проявляется реакциями этих систем на внешнее воздействие Благодаря этому свойству организмы избирательно реагируют на условия окружающей среды, способны извлекать из нее все необходимое для своего существования, а следовательно, с ними связан столь характерный для живых организмов обмен веществ, энергии и информации.

Все живые организмы построены из биополимеров – высокомолекулярных природных соединений (белков, нуклеиновых кислот и т.д.), участвующих во всех процессах жизнедеятельности организма. В живом организме белки играют, в основном, роль структурных компонентов и катализаторов (ферментов), а нуклеиновые кислоты обеспечивают хранение и передачу наследственной информации.

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...