Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Клеточные и неклеточные формы жизни

На определенной ступени эволюции органического мира возникли клеточные структуры. В этом проявляется одна из основных закономерностей, характеризующих живое, – единство дискретного и целостного. Именно благодаря клеточному строению организм, являясь дискретным, сохраняет целостность. Расчленение целого организма на мелкие морфологические единицы – клетки, обладающие большими поверхностями, весьма благоприятно для осуществления обмена веществ. Клеточная структура, не нарушая жизнедеятельности целого организма, способствует постепенной замене отмирающих или патологически измененных частей тела новыми. Сохранение клеточной структуры во всем органическом мире обусловлено тем, что только она обеспечивает наилучшее хранение, репродукцию и передачу наследственной информации; только такая структура обеспечивает реализацию наследственной информации для синтеза белка. Только с клеточной структурой связана способность организмов хранить и переносить энергию и превращать ее в работу. Наконец, разделение функций между клетками в многоклеточном организме обеспечило широкие возможности приспособления организмов к среде обитания.

Во всем многообразии органического мира можно выделить две резко отличные группы – неклеточные и клеточные формы жизни.

К неклеточным формам относятся вирусы, проявляющие жизнедеятельность только в стадии внутриклеточного паразитизма. Вирусы были обнаружены в 1892 г. русским ученым Д.И. Ивановским (1864–1920). Вирусы представляют собой простейшую форму жизни на Земле, занимающую пограничное положение между живой и неживой природой. Они могут проявлять свойства живых организмов, только попав в их клетки. Способность к размножению и связанные с ней наследственность и изменчивость вирусы проявляют лишь в живой клетке хозяина. Особенности вирусов заключаются в их незначительных размерах (20–2000 нм), отсутствие клеточного строения, обмена веществ и энергии. Но самым характерным критерием является наличие у вирусов только одной нуклеиновой кислоты – РНК или ДНК (у всех остальных живых организмов всегда имеются и ДНК, и РНК), Вирусы не способны сами синтезировать белки; способ размножения вирусов значительно отличается от размножения других организмов. Вирусы не растут. В настоящее время описано около 3000 вирусов, поражающих клетки бактерий, растений, животных и человека. Они являются возбудителями ряда опасных заболеваний.

Основную массу живых существ составляют организмы, обладающие клеточной структурой, которые в свою очередь делятся на две категории: не имеющие оформленного ядра – прокариоты, и обладающие оформленным ядром – эукариоты. К прокариотам относятся бактерии и сине-зеленые водоросли, к эукариотам – все остальные животные и растительные организмы. Прокариоты имеют по одной хромосоме, представленной молекулой ДНК. Клетки эукариот имеют ядра, содержащие хромосомы в виде соединения ДНК и белков. Таково большинство современных растений и животных. С наличием ядра совершеннее стал процесс деления клеток. В многоклеточных организмах клетки стали подразделяться на специализированные и неспециализированные. Дифференцированные клетки хорошо приспособлены к какой-либо одной функции. Поэтому жизненный процесс может быть обеспечен лишь взаимодействием разных клеток.

Систематика живой природы

Исторически биология развивалась как описательная наука о многообразных формах и видах растительного и животного царства. Поэтому важнейшее место заняли в ней методы анализа, систематизации и классификации огромного эмпирического материала, накопленного натуралистами.

Первые классификации – система Карла Линнея (1707–1778), а также классификация животных Жоржа Бюффона (1707–1788) – носили в значительной мере искусственный характер, поскольку не учитывали происхождения и развития живых организмов. Тем не менее, они способствовали объединению всего известного биологического знания, его анализу и исследованию причин и факторов происхождения и эволюции живых организмов.

Без такого исследования невозможно было бы перейти на новый уровень познания, когда объектами изучения биологов стали живые структуры сначала на клеточном, а затем на молекулярном уровне. Кроме того, обобщение и систематизация знаний об отдельных видах и родах растений и животных способствовали поиску естественных оснований классификации и развитию теории эволюции. Такие попытки создания естественной классификации, опирающиеся принципы эволюции предпринимались Ж.Б. Ламарком (1744–1829) и Э.Ж. Сент-Илером (1772–1844). Не подлежит сомнению, что они послужили важной вехой на пути создания первой научной теории эволюции видов растений и животных Чарльзом Дарвиным (1809–1882).

Систематика живой природы является наукой о классификации, в рамках которой живым организмам присваивают наименования и объединяют их в группы, или таксоны, на основе определенных отношений между ними (родственных связей, происхождения).

Основными иерархическими единицами, принятыми в современной систематике живой природы, являются следующие систематические категории, называемые в биологии таксономическими категориями:

Cамой низкой таксономической категорией в систематике живой природы является вид – наиболее естественное объединение живых организмов.

Современная систематика живой природы выделяет два надцарства – прокариоты (организмы, клетки которых не имеют оформленного ядра) и эукариоты (организмы, клетки которых содержат оформленные ядра), причем, надцарство прокариоты содержит царство бактерий и сине-зеленых водорослей, а надцарство эукариоты – царства растений, животных, грибов (рис. 5.1).

Рис. 5.1. Систематика живой природы.

Генетика

Представители любого биологического вида производят подобные себе существа. Это свойство потомков быть похожими на своих предков называется наследственностью. Однако родственные особи в большей или меньшей степени отличаются от своих родителей. Это свойство потомков называется изменчивостью. Изучением явлений наследственности и изменчивости занимается наука генетика.

Таким образом, генетика – область биологии, изучающая наследственность и изменчивость – универсальные свойства живых организмов. Наследственность и изменчивость реализуются при передаче генетической информации от родителей к потомкам.

Генетика как наука решает следующие основные задачи:

* изучение способов хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных, человека) и ее материальные носители;

* анализ способов передачи наследственной информации от одного поколения клеток и организмов к другому;

* выявление механизмов и закономерностей реализации генетической информации в процессе индивидуального развития;

* изучение закономерностей и механизмов изменчивости и ее роли в приспособительных реакциях и в процессе эволюции;

* поиск путей исправления поврежденной генетической информации.

Первый научный шаг в изучении наследственности был сделан чешским естествоиспытателем Грегором Менделем (1822–1884), который в 1866 г. опубликовал статью, заложившую основы современной генетики. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных единиц наследственности. В 1909 г. датский биолог В.Л. Иогансен (1857–1927) назвал эти единицы генами, а в 1912 г. американский генетик Т. Г. Морган (1866–1945) показал, что они находятся в хромосомах.

Законы Менделя

Исходные законы наследственности были открыты в 1865 г. чешским естествоиспытателем Г. Менделем и известны как закон единообразия первого поколения гибридов, закон расщепления и закон независимого комбинирования признаков. Эти законы были установлены Менделем в результате его опытов по скрещиванию гороха, при котором родительские формы анализировались по одной паре альтернативных признаков (например, желтая и зеленая окраска семян у двух скрещиваемых сортов гороха) либо по двум парам признаков (например, желтые гладкие семена и зеленые морщинистые). Такое скрещивание называется соответственно моногибридным или дигибридным. Опыты Менделя – образец спланированного эксперимента с тщательной обработкой данных. Однако результаты опытов Менделя, опубликованные в малоизвестном австрийском журнале, не вызвали интереса у современников и игнорировались в течение более, чем 30 лет. В 1900 г. эти законы были повторно открыты независимо друг от друга голландским ботаником и генетиком. Де Фризом (1848–1935), австрийским генетиком Э. Чермаком (1871–1962) и немецким ботаником К. Корренсом (1864–1933). Надо отдать должное этим ученым, когда работа Менделя были найдена, его приоритет был восстановлен, и основные законы наследственности стали называться его именем.

Закон единообразия первого поколения гибридов первый закон Менделя – устанавливает, что при скрещивании двух чистых особей, различающихся по одной паре признаков, гибриды первого поколения проявляют лишь один признак, например, при скрещивании двух сортов гороха с желтыми и зелеными семенами в первом поколении гибридов все семена имеют желтую окраску. Этот признак, проявляющийся в первом поколении гибридов, называется доминантным. Второй признак (зеленая окраска семян гороха), названный рецессивным признаком, в первом поколении гибридов подавляется.

Закон расщепления второйзакон Менделя – устанавливает, что при моногибридном скрещивании гибридов первого поколения их потомство (второе поколение гибридов)дает расщепление по анализируемому признаку в отношении 3:1. В примере со скрещиванием двух сортов гороха с желтыми и зелеными семенами во втором поколении гибридов произойдет расщепление: появятся растения с зелеными семенами (рецессивный признак), однако количество зеленых семян будет в три раза меньше количества желтых семян (доминантный признак).

Закон независимого комбинирования признако,втретий закон Менделя, – утверждает, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определенном соотношении появляются особи с новыми (по отношению к родительским) комбинациям признаков. Так, при дигибридном скрещивании двух сортов гороха с желтыми гладкими семенами и зелеными морщинистыми во втором поколении гибридов по внешним признакам (т.е. по фенотипу) выявляются четыре группы особей (желтые гладкие семена, желтые морщинистые, зеленые гладкие, зеленые морщинистые) в количественном соотношении: 9:3:3:1.

Открытие законов Менделя ознаменовало первый этап развития генетики.

Вторым крупнейшим этапом в истории генетики явилось обоснование в начале 20-х годов XX в американским ученым Т.Г. Морганом хромосомной теории наследственности, представляющей собой учение о локализации наследственных факторов (генов) в хромосомах клеток.

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...