Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Изображения на технических чертежах.

Изображения на технических чертежах.

Основные положения.

 

Изображения на чертежах в зависимости от содержания разделяют на виды, разрезы, сечения в соответствии с ГОСТ 2.305-68*.

Изображения предметов на чертежах получают способом прямоугольного проецирования. За основные плоскости проекций принимают шесть граней куба (рис. 1.1), грани совмещают с плоскостью, как показано на рис. 1.2.

 

 

Рис.1.1

 

 

 

Рис.1.2

 

Вид-это изображение обращенной к наблюдателю видимой части поверхности предмета, полученное методом ортогонального проецирования.

Изображение на фронтальной плоскости проекций (рис. 1.1) принимается на чертеже в качествеглавного вида. Предмет располагают относительно этой плоскости проекций так, чтобы изображение на ней давало наиболее полное представление о форме и размерах предмета.

 

Виды.

Основные виды

 

Стандарт устанавливает следующие виды, получаемые на основных плоскостях проекций (рис.1.2): вид спереди (главный), вид сверху, вид слева, вид справа, вид снизу, вид сзади.

За главный вид принимают тот, который дает наиболее полное представление о форме и размерах предмета.

Количество изображений должно быть наименьшим, но обеспечивающим полное представление о форме и размерах предмета.

Если основные виды расположены в проекционной связи, то их названия не обозначают. Для наилучшего использования поля чертежа виды допускается располагать вне проекционной связи (рис.2.2). В этом случае изображение вида сопровождается обозначением по типу:

1)указывается направление взгляда

2) над изображением вида наносят обозначение А, как на рис. 2.1.

Виды обозначаются прописными буквами русского алфавита шрифтом, на 1...2 размера превышающим шрифт размерных чисел.

 

 

Рис. 2.1

На рисунке 2.1 показана деталь, для которой необходимо выполнить четыре вида. Если эти виды расположить в проекционной связи, то на поле чертежа они займут много места. Можно расположить необходимые виды так, как показано на рис. 2.1. Формат чертежа уменьшается, но нарушена проекционная связь, поэтому нужно выполнить обозначение вида справа ( ).

 

Местные виды.

 

Местным видом называется изображение отдельного ограниченного места поверхности предмета.

Он может быть ограничен линией обрыва (рис.2.3 а) или не ограничен (рис.2.3б).

 

Рис. 2.3

 

В общем случае местные виды оформляются так же, как и основные виды.

 

Дополнительные виды.

 

Если какую-либо часть предмета невозможно показать на основных видах без искажения формы и размеров, то применяют дополнительные виды.

Дополнительным видом называется изображение видимой части поверхности предмета, получаемой на плоскости, не параллельной ни одной из основных плоскостей проекций.

Рис. 2.4

 

Если дополнительный вид выполняется в проекционной связи с соответствующим изображением (рис.2.4 а), то его не обозначают.

Если изображение дополнительного вида выносится на свободное место (рис.2.4 б), т.е. нарушается проекционная связь, то направление взгляда указывается стрелкой, расположенной перпендикулярно изображаемой части детали и обозначается буквой русского алфавита, причем буква остается параллельна основной надписи чертежа, а не поворачивается за стрелкой.

При необходимости изображение дополнительного вида можно поворачивать, тогда над изображением ставится буква и знак поворота (это окружность 5...6мм со стрелкой, между створками которой угол 90°) (рис.2.4 в).

Дополнительный вид чаще всего выполняют как местный.

 

Разрезы.

 

Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями. На разрезе показывается то, что лежит в секущей плоскости и что расположено за ней.

При этом часть предмета, расположенную между наблюдателем и секущей плоскостью, мысленно удаляют, в результате чего все закрытые этой частью поверхности становятся видимыми.

 

Построение разрезов.

На рис.3.1 даны три вида предмета (без разреза). На главном виде внутренние поверхности: прямоугольный паз и цилиндрическое ступенчатое отверстие показаны штриховыми линиями.

 

 

Рис. 3.1

 

На рис. 3.2 вычерчен разрез, полученный следующим образом.

Секущей плоскостью, параллельной фронтальной плоскости проекций, предмет мысленно рассечен вдоль своей оси, проходящей через прямоугольный паз и цилиндрическое ступенчатое отверстие, расположенное в центре предмета.. Затем мысленно была удалена передняя половина предмета , находящаяся между наблюдателем и секущей плоскостью. Так, как предмет симметричен, то нет смысла давать полный разрез. Его выполняют справа, а слева оставляют вид.

Вид и разрез разделяют штрихпунктирной линией. На разрезе показано то, что получилось в секущей плоскости и то, что находится за ней.

 

 

Рис. 3.2

 

При рассмотрении чертежа можно заметить следующее:

1) штриховые линии, которыми на главном виде обозначены прямоугольный паз и цилиндрическое ступенчатое отверстие, на разрезе обведены сплошными основными линиями, так как они стали в результате мысленного рассечения предмета видимыми;

2) на разрезе, проходившая вдоль главного вида сплошная основная линия, обозначающая срез, отпала вовсе, так как передняя половина предмета не изображается. Срез, находящийся на изображаемой половине предмета, не обозначен, так как на разрезах не рекомендуется показывать штриховыми линиями невидимые элементы предмета;

3) на разрезе штриховкой выделена плоская фигура, находящаяся в секущей плоскости, штриховка наносится только в том месте, где секущая плоскость рассекает материал предмета. По этой причине задняя поверхность цилиндрического ступенчатого отверстия не заштрихована, так же как и прямоугольный паз (при мысленном рассечении предмета секущая плоскость этих поверхностей не затронула);

4) при изображении цилиндрического ступенчатого отверстия проведена сплошная основная линия, изображающая на фронтальной плоскости проекций горизонтальную плоскость, образованную изменением диаметров;

5) разрез, помещенный на месте главного изображения, никак не изменяет изображений вида сверху и слева.

При выполнении разрезов на чертежах необходимо руководствоваться следующими правилами:

1) выполнять на чертеже только полезные разрезы ("полезными"называются разрезы, выбранные по соображениям необходимости и достаточности);

2) невидимые ранее внутренние очертания, изображаемые штриховыми линиями, обводить сплошными основными линиями;

3) фигуру сечения, входящую в разрез, штриховать;

4) мысленное рассечение предмета должно относиться только к данному разрезу и не влиять на изменение других изображений того же предмета;

Обозначение разрезов

 

Для того, чтобы знать, в каком месте предмет имеет форму, показанную на изображении разреза, место, где проходила секущая плоскость , и сам разрез обозначают. Линия, обозначающая секущую плоскость, называется линией сечения. Она изображается разомкнутой линией.

 

При этом выбирают начальные буквы алфавита (А, Б, В, Г, Д и т. д.). Над разрезом, полученным с помощью данной секущей плоскости, выполняют надпись по типу А-А, т.е. двумя парными буквами через тире (рис.3.3).

Буквы у линий сечения и буквы, обозначающие разрез, должны быть большего размера, чем цифры размерных чисел на том же чертеже (на один-два номера шрифта)

В случаях, когда секущая плоскость совпадает с плоскостью симметрии данного предмета и соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены какими-либо другими изображениями, рекомендуется не отмечать положение секущей плоскости и изображение разреза не сопровождать надписью.

На рис.3.3 показан чертеж предмета, на котором выполнено два разреза.

 

 

Рис.3.3

 

1. На главном виде разрез выполнен плоскостью, расположение которой совпадает с плоскостью симметрии для данного предмета. Она проходит вдоль горизонтальной оси на виде сверху. Поэтому этот разрез не обозначен.

2. Секущая плоскость А-А не совпадает с плоскостью симметрии данной детали, поэтому соответствующий разрез обозначен.

Буквенное обозначение секущих плоскостей и разрезов располагают параллельно основной надписи независимо от угла наклона секущей плоскости.

 

Классификация разрезов.

Разрезы имеют несколько классификаций:

1. Классификация, в зависимости от количества секущих плоскостей;

2. Классификация, в зависимости от положения секущей плоскости относительно плоскостей проекций;

3. Классификация, в зависимости от положения секущих плоскостей относительно друг друга.

 

Рис. 3.5

 

 

Простые разрезы

 

Местные разрезы

 

Сложные разрезы.

 

Сечения

 

Построение сечений.

 

На рис.4.1 изображен вал, имеющий две лыски (плоские срезы с двух сторон) и шпоночный паз (прямоугольное углубление с полукруглыми концами, предназначенное для шпонки).

Чтобы сделать чертеж более ясным, строят сечения. Для этого мысленно рассекают вал двумя секущими плоскостями А и Б, перпендикулярными оси вала. Плоскость А проходит поперек лыски и показывает форму детали в этом месте.

Плоскость Б, рассекающая вал поперек шпоночного паза, выявляет его глубину и ширину.

 

 

Рис. 4.1

 

Мысленно удалив отсеченные части вала, оставшуюся часть его рассматривают по направлению, указанному стрелками.

Изображают на чертеже только то, что находится в секущих плоскостях. Это и будут сечения. На фигуры сечения наносят штриховку (рис.4.2.)

 

Рис.4.2

 

Расположение сечений.

 

В зависимости от расположения сечения подразделяются на вынесенные и наложенные.

Вынесенными сечениями называются такие, которые располагаются вне контуров изображений, приведенных на чертеже (рис. 4.2) (выносятся на любое свободное место чертежа).

Наложенные сечения вычерчиваются сплошными тонкими линиями и располагаются в том месте, где проходила секущая плоскость, и непосредственно на самом виде, т.е. накладываются на изображение (рис.4.3).

 

 

Рис. 4.3

Вынесенным сечениям следует отдавать предпочтение перед наложенными, так как наложенные затемняют виды чертежа и неудобны для нанесения размеров.

Вынесенное сечение можно располагать, в зависимости от обстоятельств, на любом месте поля чертежа. Оно может быть помещено непосредственно на продолжении линии сечения в проекционной связи (рис.4.4), с нарушением проекционной связи (рис.4.6), а также в разрыве между частями одного и того же вида (рис.4.5).

 

 

    Рис.4.4       Рис.4.5 Рис.4.6

Отличие разреза от сечения.

 

Сечение отличается от разреза тем, что в разрезе изображается то, что расположено в секущей плоскости и то, что расположено за ней, а в сечении показывается только то, что попало непосредственно в секущую плоскость.

На рисунке 4.7 а показан разрез детали. На нем изображено то, что попало в секущую плоскость А-А, и то что расположено за ней. На рисунке 4.7 б показано сечение А-А.

 

 

Рис. 4.7

 

Обозначение сечений.

 

Сечения на чертежах обозначаются по такому же принципу, как и разрезы. Секущая плоскость изображается разомкнутой линией.

Каждую плоскость обозначают у начала и конца разомкнутой линии наружи от стрелки одной и той же прописной буквой русского алфавита.

Если секущая плоскость совпадает с осью симметрии наложенного или вынесенного сечения, то ее проводят штрихпунктирной тонкой линией и не обозначают буквами и стрелками (рис.4.3, 4.4,4.5). Над сечением в этих случаях не делают никакой надписи.

Сечение можно располагать повернутым. Тогда к надписи должен быть добавлен знак (рис.4.6).

 

Выносные элементы.

Содержание заданий

 

7.1. Задание 1

 

1. По аксонометрическому изображению детали и заданным размерам начертить три ее вида - главный, сверху и слева. Наглядное изображение не перечерчивать.

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

 

Задание 2

 

1. По размерам перечертить заданные два вида предмета и построить третий вид.

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

 

Задание 3

 

1. По размерам перечертить заданные два вида предмета и построить третий вид.

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

 

Для всех задач виды чертить только в проекционной связи.

 

 

Задача 1.

 

Рассмотрим примеры выполнения заданий.

Задача1. По наглядному изображению построить три вида детали и выполнить необходимые разрезы.

 

 

 

Задача 2

 

Задача2. По двум видам построить третий вид и выполнить необходимые разрезы.

 

 

 

Задача 2. III этап.

1. Выполнить необходимые разрезы. Количество разрезов должно быть минимальным, но достаточным, чтобы прочитать внутренний контур.

1. Секущая плоскость А открывает внутренние соосные поверхности. Эта плоскость параллельна фронтальной плоскости проекций, поэтому разрез А-А совмещается с главным видом.

2. На виде слева показан местный разрез, открывающий цилиндрическое отверстие Æ32.

3. Размеры наносятся на тех изображениях, где поверхность читается лучше, т.е. диаметр, длина и т.д., например, Æ52 и длина 114.

4. Выносные линии по возможности не пересекать. Если главный вид выбран правильно, то наибольшее количество размеров будет на главном виде.

Проверить:

  1. Чтобы каждый элемент детали имел достаточное количество размеров.
  2. Чтобы все выступы и отверстия были привязаны размерами к другим элементам детали (размер 55, 46, и 50).
  3. Габаритные размеры.
  4. Выполнить обводку чертежа, убрав все линии невидимого контура. Заполнить основную надпись.

 

 

 

Задача 3.

 

Построить три вида детали и выполнить необходимые разрезы.

 

 

 

 

 

Сведения о поверхностях.

Поверхности.

 

Для того, чтобы построить линии пересечения поверхностей, нужно уметь строить не только поверхности, но и точки, расположенные на них. В этом разделе рассматриваются наиболее часто встречающиеся поверхности.

 

Призма.

 

 

 

Рис. 8.1

 

Задана трехгранная призма (рис.8.1), усеченная фронтально-проецирующей плоскостью (2ГПЗ, 1 алгоритм, модуль №3). S Ç L= т (1234)

Так как призма проецирующая относительно П1, то горизонтальная проекция линии пересечения уже есть на чертеже, она совпадает с главной проекцией заданной призмы.

Секущая плоскость проецирующая относительно П2, значит и фронтальная проекция линии пересечения есть на чертеже, она совпадает с фронтальной проекцией этой плоскости.

Профильная проекция линии пересечения строится по двум заданным проекциям.

 

Пирамида

 

Задана усеченная трехгранная пирамида Ф(S,АВС) (рис.8.2).

Данная пирамида F пересекается плоскостями S, D и Г.

2 ГПЗ, 2 алгоритм (Модуль №3).

Ф Ç S = 123

S ^ П2 Þ S2 = 12 22 32

11 21 31 и 13 23 33 строятся по принадлежности к поверхности Ф.

Ф Ç D = 345

D ^ П2 Þ = 32 4 25 2

31 41 51 и 33 43 53 строятся по принадлежности к поверхности Ф.

Ф Ç Г = 456

Г ÇП2 Þ Г2 = 42 5 6

41 51 61 и 43 53 63 строятся по принадлежности к поверхности Ф.

 

 

Рис. 8.2

 

Цилиндр вращения.

 

Если ось вращения перпендикулярна П1, то на эту плоскость цилиндр будет проецироваться в виде окружности, а на две другие плоскости проекций в виде прямоугольников, ширина которых равна диаметру этой окружности. Такой цилиндр является проецирующим к П1.

Если ось вращения перпендикулярна П2, то на П2 он будет проецироваться в виде окружности, а на П1 и П3 в виде прямоугольников.

Аналогичное рассуждение при положении оси вращения, перпендикулярном П3 (рис.8.3).

 

 

Рис.8.3

 

Цилиндр Ф пересекается с плоскостями Р ,S ,L и Г (рис.8.3).

2 ГПЗ, 1 алгоритм (Модуль №3)

Ф ^ П3

Р, S, L, Г ^ П2

Ф Ç Р = а (6 5 и )

Ф ^ П3 Þ Ф3 = а3 (63 =53 и = )

а2 и а1 строятся по принадлежности к поверхности Ф.

Ф Ç S = b (5 4 3 )

Ф Ç S = с (2 3 ) Рассуждения аналогичны предыдущему.

Ф Г = d (12 и

Задачи на рисунках 8.4, 8.5, 8.6 решаются аналогично задаче на рис.8.3, так как цилиндр

везде профильно-проецирующий, а отверстия - поверхности проецирующие относительно

П1 - 2ГПЗ, 1 алгоритм (Модуль №3).

 

Рис. 8.4

Рис. 8.5

 

Рис. 8.6

 

Если оба цилиндра имеют одинаковые диаметры (рис.8.7), то линиями пересечения их будут два эллипса (теорема Монжа, модуль №3). Если оси вращения этих цилиндров лежат в плоскости, параллельной одной из плоскостей проекций, то на эту плоскость эллипсы будут проецироваться в виде пересекающихся отрезков прямых.

Рис. 8.7

 

Конус вращения

 

Задачи на рисунках 8.8, 8.9, 8.10, 8.11, 8.12 -2 ГПЗ (модуль №3) решаются по 2 алгоритму, так как поверхность конуса не может быть проецирующей, а секущие плоскости везде фронтально-проецирующие.

 

  Рис. 8.8     Рис. 8.9
Рис. 8.10   Рис.8.11       Рис.8.12
       

 

 

На рисунке 8.13 изображен конус вращения (тело), пересеченный двумя фронтально-проецирующими плоскостями Г и L. Линии пересечения строят по 2 алгоритму.

На рисунке 8.14 поверхность конуса вращения пересекается с поверхностью профильно-проецирующего цилиндра.

2 ГПЗ, 2 алгоритм решения (модуль №3), то есть профильная проекция линии пересечения есть на чертеже, она совпадает с профильной проекцией цилиндра. Две другие проекции линии пересечения строят по принадлежности конусу вращения.

 

 

Рис.8.13

Рис.8.14

Сфера.

 

Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.

Если оси вращения поверхностей пересекаются и параллельны одной из плоскостей проекций, то на эту плоскость все линии пересечения - окружности проецируются в виде отрезков прямых.

На рис. 8.15 - сфера, Г - плоскость, L - цилиндр, Ф - усеченный конус.

S Ç Г =а - окружность;

S Ç L =b - окружность;

S Ç Ф =с - окружность.

Рис.8.15

 

Так как оси вращения всех пересекающихся поверхностей параллельны П2 , то все линии пересечения - окружности на П2 проецируются в отрезки прямых.

На П1 : окружность "а" проецируется в истинную величину так как параллельна ей; окружность "b" проецируется в отрезок прямой, так как параллельна П3 ; окружность"с" проецируется в виде эллипса, который строится по принадлежности сфере.

Сначала строятся точки 1, 7 и 4, которые определяют малую и большую оси эллипса. Затем строит точку 5, как лежащую на экваторе сферы.

Для остальных точек (произвольных) проводят окружности (параллели) на поверхности сферы и по принадлежности им определяются горизонтальные проекции точек, лежащих на них.

 

Примеры выполнения заданий.

 

Задача 4 .Построить три вида детали с необходимыми разрезами и нанести размеры.

 

 

 

 

 

Задача 5. Построить три вида детали и выполнить необходимые разрезы.

 

 

 

Аксонометрия

Рекомендации по выбору аксонометрических проекций

 

Из ГОСТ2.317-70 и различных видов аксонометрических проекций рассмотрим ортогональные изометрию и диметрию, а также косоугольную диметрию, как наиболее часто применяющиеся.

 

Прямоугольная изометрия

 

В изометрии все оси наклонены к аксонометрической плоскости под одним и тем же углом, следовательно угол между осями (120° ) и коэффициент искажения будет одинаков. Выбираем масштаб 1 : 0,82=1,22; М 1,22 : 1.

Для удобства построения пользуются приведенными коэффициентами и тогда на всех осях и линиях им параллельных откладываются натуральные размеры. Изображения таким образом становятся больше, но на наглядности это не отражается.

Выбор вида аксонометрии зависит от формы изображаемой детали. Проще всего строить прямоугольную изометрию, поэтому такие изображения встречаются чаще. Однако, при изображении деталей, включающих четырехугольные призмы и пирамиды, их наглядность уменьшается. В этих случаях лучше выполнять прямоугольную диметрию.

Косоугольную диметрию следует выбирать для деталей, имеющих большую длину при небольшой высоте и ширине (типа вала) или когда одна из сторон детали содержит наибольшее число важных особенностей.

В аксонометрических проекциях сохраняются все свойства параллельных проекций.

Рассмотрим построение плоской фигуры АВСDE.

 

Рис.10.4

 

Прежде всего построим оси в аксонометрии. На рис.10.4 представлено два способа построения аксонометрических осей в изометрии. На рис.10.4 а показано построение осей при помощи циркуля, а на рис.10.4б - построение при помощи равных отрезков.

Далее рассмотрим построение плоской фигуры АВСDE на плоском чертеже (рис.10.5а) и в аксонометрии (рис.10.5б)

 

Рис.10.5

 

Фигура АВСDЕ лежит в горизонтальной плоскости проекций, которая ограничена осями ОХ и ОY (рис.10.5а). Строим эту фигуру в аксонометрии (рис.10.5б).

Каждая точка, лежащая в плоскости проекций, сколько имеет координат? Две.

Точка, лежащая в горизонтальной плоскости - координаты Х и Y.

Рассмотрим построение т.А. С какой координаты начнем построение? С координаты ХА.

Для этого замеряем на ортогональном чертеже величину ОАХ и откладываем на оси Х', получим точку АХ'. АХА1 какой оси параллельна? Оси Y. Значит из т. АХ' проводим прямую параллельную оси Y' и откладываем на ней координату YA. Полученная точка А' и будет аксонометрической проекцией т.А.

Аналогично строятся все остальные точки. Точка С лежит на оси ОY, значит имеет одну координату.

 

Рис.10.6

 

На рисунке 10.6 задана пятигранная пирамида, у которой основанием является этот же пятиугольник АВСDЕ. Что нужно достроить, чтобы получилась пирамида? Надо достроить точку S, которая является ее вершиной.

Точка S- точка пространства, поэтому имеет три координаты ХS, YS и ZS. Сначала строится вторичная проекция S (S1 ), а затем все три размера переносятся с ортогонального чертежа. Соединив S' c A', B', C', D' и E', получим аксонометрическое изображение объемной фигуры - пирамиды.

 

Изометрия окружности

 

Окружности проецируются на плоскость проекций в натуральную величину, когда они параллельны этой плоскости. А так как все плоскости наклонены к аксонометрической плоскости, то окружности, лежащие на них, будут проецироваться на эту плоскость в виде эллипсов. Во всех видах аксонометрий эллипсы заменяются овалами.

При изображении овалов надо, прежде всего, обратить внимание на построение большой и малой оси. Начинать надо с определения положения малой оси, а большая ось всегда ей перпендикулярна.

Существует правило: малая ось совпадает с перпендикуляром к этой плоскости, а большая ось ей перпендикулярна или направление малой оси совпадает с осью, не существующей в этой плоскости, а большая ей перпендикулярна (рис.10.7)

 

 

Рис.10.7

Большая ось эллипса перпендикулярна той координатной оси, которая отсутствует в плоскости окружности.

Большая ось эллипса равна 1,22 ´ d окр; малая ось эллипса равна 0,71 ´ d окр.

 

Рис.10.8

 

На рисунке 10.8 в плоскости окружности отсутствует ось Z, поэтому большая ось перпендикулярна оси Z'.

 

Рис.10.9

 

На рисунке 10.9 в плоскости окружности отсутствует ось Х, поэтому большая ось перпендикулярна оси Х'.

А теперь рассмотрим, как вычерчивается овал в одной из плоскостей, например, в горизонтальной плоскости XY. Существует множество способов построения овала, познакомимся с одним из них.

 

Рис.10.10

 

Последовательность построения овала следующая (рис.10.10):

1. Определяется положение малой и большой оси.

2.Через точку пересечения малой и большой оси проводим линии, параллельные осям X' и Y'.

3.На этих линиях, а также на малой оси, из центра радиусом, равным радиусу заданной окружности, откладываем точки 1 и 2, 3 и 4, 5 и 6.

4. Соединяем точки 3 и 5, 4 и 6 и отмечаем точки пересечения их с большой осью эллипса (01 и 02). Из точки 5, радиусом 5-3, и из точки 6, радиусом 6-4, проводим дуги между точками 3 и 2 и точками 4 и 1.

5. Радиусом 01-3 проводим дугу, соединяющую точки 3 и 1 и радиусом 02-4- точки 2 и 4. Аналогично строятся овалы в других плоскостях (рис.10.11).

 

Рис.10. 11

Далее рассмотрим примеры построения аксонометрии конуса вращения и цилиндра.

 

Рис.10.12

Для простоты построения наглядного изображения поверхности ось Z может совпадать с высотой поверхности, а оси X и Y с осями горизонтальной проекции.

Чтобы построить точку А, принадлежащую поверхности надо построить ее три координаты XA, YA и ZA. Точка на поверхности цилиндра и других поверхностях строится аналогично (рис.10.13).

Рис.10.13

 

Большая ось овала перпендикулярна оси Y'.

При построении аксонометрии детали, ограниченной несколькими поверхностями, следует придерживаться следующей последовательности:

Вариант 1.

1. Деталь мысленно разбивается на элементарные геометрические фигуры.

2. Вычерчивается аксонометрия каждой поверхности, линии построения сохраняются.

3. Строится вырез 1/4 детали, чтобы показать внутреннюю конфигурацию детали.

4. Наносится штриховка по ГОСТ 2.317-70.

Рассмотрим пример построения аксонометрии детали, внешний контур которой состоит из нескольких призм, а внутри детали цилиндрические отверстия разных диаметров.

Вариант 2. (Рис. 10.5)

1. Строится вторичная проекция детали на плоскости проекций П .

2. Откладываются высоты всех точек.

3. Строится вырез 1/4 части детали.

4. Наносится штриховка.

Для данной детали более удобным для построения будет вариант 1.

 

 

Рис.10.14

 

Прямоугольная диметрия.

 

Прямоугольную диметрическую проекцию можно получить путем поворота и наклона координатных осей относительно П¢ так, чтобы показатели искажения по осям X' и Z' приняли равное значение, а по оси Y'- вдвое меньшее. Показатели искажения "kx" и "kz" будут равны 0,94, а "ky"- 0,47.

На практике пользуются приведенными показателями, т.е. по осям X' и Z' откладывают натуральные размеры, а по оси Y'- в 2 раза меньше натуральных.

Ось Z' обычно располагают вертикально, ось X'- под углом 7°10¢ к горизонтальной линии, а ось Y'-под углом 41°25¢ к этой же линии (рис.12.17).

 

 

Рис. 12.17

 

1. Строится вторичная проекция усеченной пирамиды.

2. Строятся высоты точек 1,2,3 и 4.

 

Рис. 10.18

 

Проще всего строить ось Х¢, отложив на горизонтальной линии 8 равных частей и вниз по вертикальной линии 1 такую же часть.

Чтобы построить ось Y' под углом 41°25¢ , надо на горизонтальной линии отложить 8 частей, а на вертикальной 7 таких же частей (рис.10.17).

На рисунке 10.18 изображена усеченная четырехугольная пирамида. Чтобы построение ее в аксонометрии было проще, ось Z должна совпадать с высотой, тогда вершины основания ABCD будут лежат на осях Х и Y (А и С Î х, В и D Î y). Сколько координат имеют точки 1 и ? Две. Какие? Х и Z.

Эти координаты откладываются в натуральную величину. Полученные точки 1¢ и 3¢ соединяются с точками А¢ и С¢ .

Точки 2 и 4 имеют две координаты Z и Y. Так как высота у них одинаковая, то координата Z откладывается на оси Z'. Через полученную точку проводится линия, параллельная оси Y, на которой по обе стороны от точки откладываются расстояние 0141 уменьшенное в два раза.

Полученные точки и соединяются с точками В¢ и D'.

 

 

Наклонные сечения.

 

При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

 

 

Рис. 11.1

 

Сначала строим проекции его на П1 и на П2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника строим по принадлежности пирамиде.

Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П4 , параллельная заданной секущей плоскости А-А, на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или задача №117 из рабочей тетради по начертательной геометрии).

Построения выполняются в следующей последовательности (рис.11.2):

1. 1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А.

2. 2.Из точек пе<

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...