Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Архитектура вычислительных систем

Путилин А.Б.

Архитектура вычислительных систем

И организация ЭВМ

(курс лекций)

Содержание

Введение

1. Основные характеристики современных вычислительных систем.

2. Классификация средств ЭВТ

3. Поколения ЭВМ

4. Принципы построения современных ЭВМ

- принцип программного управления

- принцип децентрализации управления и построения

- принцип модульности

- принцип иерархичности построения структуры

- принцип иерархичности памяти

- мультипрограммные режимы

- перспективы развития структур ЭВМ

5. Общие функции программного обеспечения и их развитие

6. Персональные ЭВМ, как инструмент специалиста и их развитие

7. Типы структур вычислительных машин и систем.

- структуры вычислительных машин

- структуры вычислительных систем

8. Факторы, определяющие развитие архитектуры вычислительных систем

- тенденции развития СБИС

- тенденции развития элементной базы процессорных устройств

- тенденции развития полупроводниковых запоминающих устройств

- перспективные направления исследования в области архитектуры ВС

9. Архитектура системы команд

- классификация архитектур системы команд

-классификация по составу и сложности команд

-классификация по месту хранения операндов

10. Стековая архитектура системных команд

11. Аккумуляторная архитектура системных команд

12. Регистровая архитектура системы памяти

13. Архитектура ВМ с выделенным доступом к памяти

14. Функциональная организация фон-Неймановской ВМ

- организация работы УУ

- арифметико-логическое устройство

- основная память

- модуль ввода-вывода

15. Реализация микроопераций и микропрограмм

- понятие о микрооперациях и микропрограмм

- способы записи микропрограмм

- языки микропрограммирования

16. Организация шин

- типы шин

- физическая реализация шин

- особенности передачи сигналов по шинам

- адресация шин и некоторые характеристики

17. Организация памяти ЭВМ

18. Характеристики систем памяти

19. Иерархия запоминающих устройств

-основная память

-блочная организация памяти

-расслоение памяти

20. Организация микросхем памяти ЭВМ

21. Основные направления в архитектуре процессоров

-конвейеризация вычислений

-синхронные линейные конвейеры

-метрики эффективности конвейеров

-нелинейные конвейеры

-конвейер команд

22. Построение однородно структурированных, континуальных вычислительных и управляющих сред

-нейронные вычислительные системы

-континуальные вычислительные и управляющие системы

Приложение 1. Термины

Литература

 

 

Введение

Последние десятилетия характеризуются взрывным развитием информатизации общества и изменения социальной информационной среды.

Информатизацияэто «развитие и широкомасштабное применение методов и средств сбора, преобра­зования, хранения и распространения информации, обеспечивающих систематизацию имеющихся и формирование новых знаний и их ис­пользование обществом в целях его текущего управления и дальней­шего совершенствования и развития».

Цель информатизации общества состоит в демократизации доступа к информационным ресурсам и повышении эффективности их эксплуатации на основе системной компьютеризации всех этапов жизненного цикла информации — ее создания, накопления, хранения, обработки, использования.

Происходит переход от индустриального общества, к информационному при таком переходе особо важная роль принадлежит вычислительным системам и телекоммуника­ционным вычислительным сетям, в которых сосредоточены новейшие средства вычислительной техники и средства связи, а также самые прогрессивные и эффективные технологии, в том числе информационные технологии.

Информацион­ные технологии включают технологии получения, передачи, обра­ботки, хранения информации и ее использования для обеспечения че­ловеческой деятельности. Основным средством обеспечивающим возможность развития информационных технологий является ЭВМ. Уровень развития информационных технологий на основе ЭВМ — один из критериев не только экономического, но и политического могущества государства.

Это связано с тем, что информатизация позволяет:

• в общественной сфере — создать условий всем гражданам для информационного обеспечения, реализации права каждого человека на знания, информированность и следовательно создать принципиально новые условия для развития личности и возможности её реализации;

• в производственной сфере — обеспечить возможность комплексной автомати­зации всех отраслей материального производства значительно повысив мобильность в освоении новых видов продукции;

• в научной сфере — обеспечить возможность опережающего развития науки, с тем чтобы гарантировать научное обоснование всех проблем и задач на основе их всестороннего информационного обеспечения.

Следовательно, изучение индустриальных методов и вычислительных систем, обеспечивающих развитие информатизации, является основой получения образования в области информатики.

 

 

Классификация средств ЭВТ

В настоящее время в мире произведены и работают миллионы вычислительных машин, относящихся к различным поколениям, типам, классам. Вычислительные машины отличаются областями применения, техническими характеристиками и вычислительными возможностями. Традиционно электронную технику подразделяют на аналоговую и цифровую.

В аналоговых вычислительных машинах (АВМ) обрабатываемая информация представляется в виде, аналоговых величин: тока, напряжения, угла поворота какого-то механизма и т.п. Эти машины обеспечивают приемлемое быстродействие, но не очень высокую точность вычислений (0,001 – 0,01). Подобные машины распространены не очень широко. Они используются в основном в проектных и научно-исследовательских учреждениях в составе различных стендов по отработке сложных образцов техники. По своему назначению их можно рассматривать как специализированные вычислительные машины.

В настоящее время под словом ЭВМ обычно понимают цифровые вычислительные машины, в которых информация кодируется двоичными кодами чисел. Именно эти машины благодаря универсальным возможностям и являются самым массовым инструментом вычислительной техникой, при этом всё чаще используется англоязычное слово – компьютер.

Рынок современных компьютеров отличается разнообразием и динамизмом, каких ещё не знала ни одна область человеческой деятельности. Каждый год стоимость вычислений сокращается примерно на 25-30%, стоимость хранения единицы информации – до 40%.

То, что 10-15 лет назад считалось современной большой ЭВМ, в настоящее время является устаревшей техникой с очень скромными возможностями. Современный персональный компьютер с быстродействием в сотни миллионов операции в секунду становится доступным средством для массового пользователя.

В классификации десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые сейчас почти исчезли из обихода. Вместе с тем существует целый ряд закономерностей развития вычислительной техники, которые позволяют предвидеть и предсказывать основные результаты этого поступательного движения. Необходимо анализировать традиционные и новые области применения ЭВМ, классы и типы используемых вычислительных средств, сложившуюся конъюнктуру рынка информационных технологий и его динамику, количество и качество вычислительной техники, выпускаемой признанными лидерами-производителями средств ЭВТ и т.д. Коротко рассмотрим некоторые из этих вопросов, выяснение которых позволит понять, какая вычислительная техника необходима для решения определенных задач.

Первое направление является традиционным – применение ЭВМ для автоматизации вычислений. Научно-техническая революция во всех областях науки и техники постоянно выдвигает, новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и космическая техника и др.). Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в основном и создавались для: автоматизации вычислений.

Второе направление применения ЭВМ связана с использованием их в системах управления. Она зародилась примерно в шестидесятые годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Математическая база этой новой сферы практически отсутствовала, в течение последую­щих 15-20 лет она была создана.

Новое применение вычислительных машин потребовало видоиз­менения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки.

Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользовательскими. Для исключения взаимных помех между программами пользователей в структуру машин были введены средства разграничения: блоки прерываний и приоритетов, блоки защиты, средства измерения времени и т.п. Для управления разнообразной периферией стали использоваться специальные процессоры ввода-вывода данных или каналы.

Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и на сегодняшний день она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др. Для выполнения этих работ в настоящее время применяются в основном ПЭВМ.

Третье направление связано с применением ЭВМ для решения задач искусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов с одного языка на другой, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д. Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам.

В настоящее время в основном выпускаются четыре класса компьютеров:

1. Большие ЭВМ (mainframe), которые представляют собой многопользовательские машины с центральной обработкой, с большими возможностями для работы с базами данных, с различными формами удаленного доступа.

2. Машины для обеспечения научных исследований. Пример такой машины это RS/6000 – очень мощные по производительности, предназначены для построения рабочих станций для работы с графикой, UNIX-серверов, кластерных комплексов

3. Средние ЭВМ, предназначенные в первую очередь для работы в финансовых структурах (ЭВМ типа AS/400(Advanced Portable Model3) – «бизнес - компьютеры», 64-разрядные).

4. Персональные компьютеры на платформе микросхем фирмы Intel. Это IBM совместимые компьютеры поступающие в сферу малого бизнеса и личного пользования. Потребление компьютеров этой серии исчисляется миллионами, несмотря на столь внушительный объем выпуска персональных компьютеров этой платформы, фирма IВМ проводит большие исследования и развивает собственную альтернативную платформу, получившую название Роwer РС. Это на­правление, по мнению фирмы, позволило бы значительно улучшить структуру аппаратных средств ПК, а значит, и эффективность их применения. Однако новые модели этой платформы пока не вы­держивают конкуренции с IBM PC. Немало- важным здесь является неразвитость рынка программного обеспечения, поэтому у массового пользователя это направление не находит спроса, и доля компьютеров с процессорами Power РС пока еще незначительна.

Кроме перечисленных типов вычислительной техники, необходимо отметить особый класс вычислительных систем, получивший название суперЭВМ. Их развитие связано с тем, что современной наукой и техникой постоянно выдвигаются новые - крупномасштабные задачи, требующие выполнения больших объемов вычислений. Особенно эффективно применение суперЭВМпри решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. В этом случае ЭВМ позволяет методами численного моделирования получить результаты вычислительных экспериментов, обеспечивая приемлемое время и точность решения, т.е. решающим условием необходимости разработки и применения подобных ЭВМ является экономический показатель «производительность/ стоимость».Например это задачи моделирования процессов в земной атмосфере, океане и т.п. СуперЭВМ позволяют по сравнению с другими типами машин точнее, быстрее и качественнее решать масштабные задачи, обеспечивая необходимый приоритет в разработках перспективной вычислительной техники. Дальнейшее развитие суперЭВМ связывается с использованием направления массового параллелизма, при котором одновременно могут работать сотни и даже тысячи процессоров. Образцы таких машин уже выпускаются несколькими фирмами: nCube (гиперкубические ЭВМ), Connection Machine, Mass Par, NCR/Teradata, KSR, IBM RS/6000, MPP и др.­

На рубеже тысячелетий фирма IВМ объявила о разработке в рамках ANSI (стратегический компьютерной инициативы) новой супер-ЭВМ, которая будет содержать более миллиона микропроцессоров типа Pentium (1020) по расчетам она должна иметь быстродействие 1015 операций в секунду.

Необходимо отметить и еще один класс наиболее массовых средств ЭВТ–встраиваемые микропроцессоры. Успехи микроэлектроники позволяют создавать миниатюрные вычислительные устройства, вплоть до однокристальных ЭВМ. Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Они находят все большее применение в бытовой технике, в городском хозяйстве, на производстве. Постепенно они входят в нашу жизнь, все больше изменяя среду обитания человека.

Таким образом, можно предложить следующую классификацию средств вычислительной техники, в основу которой положено их разделение по быстродействию:

· суперЭВМ для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных и задач моделирования;

· большие ЭВМ для комплектования ведомственных, территориальных и региональных вычислительных центров

· средние ЭВМ широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов;

· персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (APM) для специалистов различного уровня;

· встраиваемее микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами.

 

С развитием сетевых технологий все больше начинает использоваться другой классификационный признак, отражающий место и роль ЭВМ в сети:

· мощные машины и вычислительные системы для управления гигантскими сетевыми хранилищами информации

· кластерные структуры;

· серверы

· рабочие станции

· сетевые компьютеры

Мощные машины и вычислительные системы предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По своим характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориентированными на обслуживание мощных потоков информации.

Кластерные структуры представляют собой многомашинные распределенные вычислительные системы, объединяющие несколько серверов. Это позволяет гибко управлять ресурсами сети, готовность и другие характеристики.

Серверы – это вычислительные машины и системы, управляющие определенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс- серверы, почтовые, коммуникационные, WEB-серверы и др.

Рабочие станции – это абонентские пункты в сетях, ориентированные на работу основной массы непрофессиональных пользователей с сетевыми ресурсами. Этот термин как бы отделяет их от ПЭВМ, обеспечивающих работу основной массы непрофессиональных пользователей, работающих обычно в автономном режиме.

Сетевые компьютеры представляют собой упрощенные профессиональные компьютеры, вплоть до карманных ПК. Их основными назначением является обеспечение доступа к сетевым информационным ресурсам, при этом вычислительные возможности у них достаточно низкие.

Высокие скорости вычислений, обеспечиваемые ЭВМ различных классов, позволяют перерабатывать и выдавать все больше количество информации, что, в свою очередь, порождает потребности в создании связей между отдельно используемыми ЭВМ. Поэтому все современные ЭВМ в настоящее время имеют средства подключения к сетям связи и объединения в системе.

Перечисленные типы ЭВМ, образуют некое подобие пирамиды с определенным соотношением численности ЭВМ каждого слоя и набором их технических характеристик Распределение вычислительных возможностей по слоям должно быть сбалансировано.

Поколения ЭВМ

Ключевая роль в современной инфраструктуре информатизации принадлежит системам коммуникаций и вычислительным сетям, в которых сосредоточены новейшие средства вычислительной техни­ки, информатики, связи, а также самые прогрессивные информацион­ные технологии. Именно они обеспечивают пользователям широкий набор информационно-вычислительных услуг с доступом к локаль­ным и удаленным машинным ресурсам, технологиям и базам данных.

На пути развития электронной вычислительной техники (начиная с середины 40-х годов) можно выделить четыре поколения больших ЭВМ, отличающихся элементной базой, функционально-логической органи­зацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристика­ми, степенью доступа к ЭВМ со стороны пользователей. Смене поколений сопутствовало изменение основных технико-эксплуатационных и технико-экономических показателей ЭВМ, и в первую очередь та­ких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремле­ние уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь операторов с машинами, повысить эффективность ис­пользования ЭВМ. Это диктовалось и диктуется постоянным ро­стом сложности и трудоемкости задач, решение которых возлагается, на ЭВМ в различных сферах применения.

Возможности улучшения технико-эксплуатационных показателей ЭВМ в значительной степени зависят от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития ЭВМ каждое поколение обычно в первую очередь характе­ризуется используемой элементной базой.

Машины первого поколения имели внушительные размеры (десятки квадратных метров площади, систему охлаждения и по­требляли большую мощность). При этом они имели сравнительно малое быстродей­ствие, малую емкость оперативной памяти, невысокую надежность работы и недостаточно развитое программное обеспечение. Но в ЭВМ этого поколения были заложены основы логического построения машин и продемонстрированы возможности цифровой вычислитель­ной техники.

Основным активным элементом ЭВМ первого поколенияявлялась электронная лампа, остальные компоненты электронной аппарату­ры — это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти ЭВМ уже с середины 50-х годов начали применяться специально разработанные для этой цели эле­менты — ферритовые сердечники с прямоугольной петлей гистере­зиса. В качестве устройства ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфо­раторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально для ЭВМ были разработаны электромеханичес­кие запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

В машинах второго поколения(в конце 50-х годов) на смену лампам пришли транзисторы. В отличие от ламповых ЭВМ транзис­торные машины обладали большим быстродействием, емкостью опе­ративной памяти и надежностью. Существенно уменьшились разме­ры, масса и потребляемая мощность. Значительным достижением явилось применение печатного монтажа. Повысилась надежность электромеханических устройств ввода-вывода, их удельный вес в общей структуре ЭВМ увеличился. Машины второго поколения обладали большими вычислительными и логическими возможностями.

Особенность машин второго поколения — их дифференциация по применению. Появились машины для решения научно-технических и экономических задач, для управления производственными процесса­ми и различными объектами (управляющие машины).

Наряду с техническим совершенствованием ЭВМ развиваются ме­тоды и приемы программирования вычислений, высшей ступенью ко­торых является появление автоматического программирования, требующее ми­нимальных затрат труда математиков-программистов. Большое раз­витие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению на ЭВМ. С появ­лением алгоритмических языков резко сократились штаты «чистых» программистов, поскольку составление программ на этих языках стало под силу самим пользователям.

В период развития и совершенствования машин второго поколе­ния наравне с однопрограммными появились многопрограммные (муль­типрограммные) ЭВМ. В отличие от однопрограммных машин, в которых программы выполняются только поочередно(развернуто во времени), в многопрог­раммных ЭВМ возможна совместная реализация нескольких программ за счет организации параллельной работы основных устройств ма­шины.

Третье поколение ЭВМ(в конце 60-х — начале 70-х годов) харак­теризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось существенно улучшить технические и эксплуатационные характеристики машин. Этому способствовало также применение многослойного печатного монтажа.

В машинах третьего поколения значительно расширился набор раз­личных электромеханических устройств для ввода и вывода инфор­мации. Развитие этих устройств носит эволюционный характер, но их характеристики совершенствуются гораздо медленнее, чем характе­ристики электронного оборудования.

Программное обеспечение машин третьего поколения получило дальнейшее развитие, особенно это касается операционных систем. Развитые операционные системы многопрограммных машин, снабжен­ных периферийными устройствами ввода-вывода с автономными пультами абонентов, обеспечивают управление работой ЭВМ в раз­личных режимах: пакетной обработки, разделения времени, запрос-ответ и др.

Например, в режиме разделения времени многим абонентам пре­доставляется возможность одновременного, непосредственного и опе­ративного доступа к ЭВМ. Вследствие большого различия инерцион­ности человека и машины у каждого из одновременно работающих абонентов складывается впечатление, будто ему одному предостав­лено машинное время.

При разработке машин третьего поколения получили развитие системы автоматизации проектирования (САПР). Основной объем доку­ментации, необходимой для монтажа, разрабатывается с помощью ЭВМ.В дальнейшем эти методы будут играть важнейшую роль в развитии ЭВМ.

Для машин четвертого поколения(конец 70-х годов) характерно применение больших интегральных схем (БИС). Высокая степень ин­теграции способствует увеличению плотности компоновки электрон­ной аппаратуры, повышению ее надежности и быстродействия, сни­жению стоимости. Это, в свою очередь, оказывает существенное воз­действие на логическую структуру ЭВМ и ее программное обеспече­ние. Более тесной становится связь структуры машины и ее программ­ного обеспечения, особенно операционной системы.

Отчетливо проявляется тенденция к унификации ЭВМ, созданию машин, представляющих собой единую систему. Ярким выражением этой тенденции является создание и развитие ЕС ЭВМ — Единой сис­темы электронных вычислительных машин.

Промышленный выпуск первых моделей ЕС ЭВМ был начат в 1972 г., при их создании были использованы все современные достиже­ния в области электронной вычислительной техники, технологии и кон­струирования ЭВМ, в области построения систем программного обес­печения. Объединение знаний и производственных мощностей стран-разработчиков позволило в довольно сжатые сроки решить сложную комплексную научно-техническую проблему. ЕС ЭВМ представляла собой непрерывно развивающуюся систему, в которой улучшались технико-эксплуатационные показатели машин, совершенствовалось периферийное оборудование и расширялась, его номенклатура.

Кроме указанных выше больших ЭВМ, со второй половины 50-х годов начали развиваться мини-ЭВМ, отличающиеся меньшими фун­кциональными возможностями главным образом из-за ограниченного набора команд и меньшей разрядности чисел.

С появлением в США микропроцессоров (1971 г.) начал развивать­ся новый класс вычислительных машинмикроЭВМ. За короткое время микропроцессоры прошли большой путь развития: от первого поколения 4- и 8-разрядных микропроцессоров, выполненных по канальной МОП-технологии, до четвертого поколения 32- и 64-разряд­ных микропроцессоров.

В настоящее время реализуется программа по разработке в бли­жайшие 8—10 лет новых типов компьютеров:

• многопроцессорных компьютеров с высокой степенью параллелиз­ма обработки информации;

• компьютеров с нейронными сетями;

• компьютеров, в которых для передачи информации используется свет.

Появление персональных компьютеров — это наиболее яркое и динамично развивающееся направление в области вычислительной техники. С внедрением персональных компьютеров решение задач информа­тизации общества поставлено на реальную основу. Кроме того, по­требовался новый подход к организации систем обработки данных, к созданию новых информационных технологий. Возникла необходи­мость перехода от систем централизованной обработки данных к системам распределенной обработки данных, т.е. к компьютерным (вычислительным) сетям различных уровней — от локальных до гло­бальных. Появились качественно новые возможности как в развитии ЭВМ, так и их применении.

 

Принцип модульности построения

Модульность построения - выделение в структуре ЭВМ автономных, функционально и конструктивно законченных устройств (процессор, модуль памяти, накопитель на жестком или гибком магнитном диске).

Модульная конструкция ЭВМ делает ее открытой системой, способной к адаптации и совершенствованию. К ЭВМ можно подключать дополнительные устройства, улучшая ее технические и экономические показатели. Появляется возможность наращивания вычислительной мощи, улучшения структуры путем замены отдельных устройств на более совершенные, изменения и управления конфигурацией системы, приспособления ее к конкретным условиям применения в соответствии с требованиями пользователей.

В современных ЭВМ принцип децентрализации и параллельной работы распространен как на периферийные устройства, так и на сами ЭВМ (процессоры). Появились вычислительные системы (ВС), содержащие несколько вычислителей (ЭВМ или процессоров), работающих согласованно и параллельно. Внутри самой ЭВМ произошло еще более резкое разделение функций между средствами обработки. Появились отдельные специализированные процессоры, например сопроцессоры, выполняющие обработку чисел с плавающей точкой, матричные процессоры и др.

Все существующие типы ЭВМ выпускаются семействами, в которых различают старшие и младшие модели. Всегда имеется возможность замены более слабой модели на более мощную. Это обеспечивается информационной, аппаратной и программной совместимостью. Программная совместимость в семействах устанавливается по принципу «снизу вверх», т.е. программы, разработанные для ранних и младших моделей, могут обрабатываться и на старших, но не обязательно наоборот. Это играет важную роль в адаптации новых более современных моделей ЭВМ и систем к конкретным условиям решаемых задач.

Модульность структуры ЭВМ требует стандартизации и унификации оборудования, номенклатуры технических и программных средств, средств сопряжения — интерфейсов, конструктивных решений, унификации типовых элементов замены, элементной базы и нормативно-технической документации. Все это способствует улучшению технических и эксплутационных характеристик ЭВМ, росту технологичности их производства.

 

 

Принцип иерархичности памяти

 

Пользователю, желательно иметь в ЭВМ оперативную память большой информационной емкости и высокого быстродействия. Однако одноуровневое построение памяти не позволяет одновременно удовлетворять этим двум противоречивым требованиям. Поэтому память современных ЭВМ строится по многоуровневому, пирамидальному принципу.

В составе процессоров может иметься сверхоперативное запоминающее устройство небольшой емкости, образованное несколькими десятками или несколькими сотнями регистров с быстрым временем доступа, составляющим один такт процессора (наносекунды, нс). Здесь обычно хранятся данные, непосредственно используемые в обработке.

Следующий уровень образует кэш-память, или память блокнотного типа, представляющая собой буферное запоминающее устройство для хранения активных страниц объемом десятки и сотни Кбайтов. В современных ПК она в свою очередь делится: на кэш L1 (Еп= =16—32 Кбайта с временем доступа 1—2 такта процессора); на кэш L2 (Еп=128—512 Кбайт с временем доступа 3—5 тактов) и даже на кэш L3 (Еп=2—4 Мбайта с временем доступа 8—10 тактов). Кэш-память, как более быстродействующая, предназначается для ускорения выборки команд программы и обрабатываемых данных. Здесь возможна ассоциативная выборка данных. Основной объем программ пользователей и данных к ним размещается в оперативном запоминающем устройстве (емкость — миллионы машинных слов, время выборки — 10—20 тактов процессора).

Часть данных-констант, необходимых операционной системе для управления вычислениями и используемых наиболее часто, может размещаться в постоянном запоминающем устройстве (ПЗУ). На более низких уровнях иерархии находятся внешние запоминающие устройства на магнитных носителях. Они могут быть реализованы на жестких и гибких магнитных дисках, магнитных лентах, магнитооптических дисках и др. Их отличает низкое быстродействие и очень большая емкость.

Организация заблаговременного обмена информационными потоками между ЗУ различных уровней при децентрализованном управлении ими позволяет рассматривать иерархию памяти как абстрактную единую кажущуюся (виртуальную) память. Согласованная работа всех уровней обеспечивается под управлением программ операционной системы. Объём используемой памяти благодаря этому значительно превосходит ОЗУ.

 

Мультипрограммные режимы

 

Децентрализация управления и структуры ЭВМ позволила перейти к более сложным многопрограммным (мультипрограммным)режимам. При этом в ЭВМ одновременно может обрабатываться несколько программ пользователей.

В ЭВМ, имеющих один процессор, многопрограммная обработка является кажущейся. Она предполагает параллельную работу отдельных устройств, задействованных в вычислениях по различным задачам пользователей. Например, компьютер может производить распечатку каких-либо документов и принимать сообщения, поступающие по каналам связи. Процессор при этом может производить обработку данных по третьей программе, а пользователь — вводить данные или программу для новой задачи, слушать музыку и т.п.

В ЭВМ или вычислительных системах, имеющих несколько процессоров обработки, многопрограммная работа может быть более глубокой. Автоматическое управление вычислениями предполагает усложнение структуры за счет включения в ее состав систем и бло­ков, разделяющих различные вычислительные процессы друг от друга, исключающие возможность возникновения взаимных помех и ошибок (системы прерываний и приоритетов, защиты памяти). Самостоятельного значения в вычислениях они не имеют, но явля­ются необходимым элементом структуры для обеспечения этих вычислений.

 

Структуры вычислительных машин

В настоящее время примерно одинаковое распространение получили два способа построения вычислительных машин: с непосредственными связямии на основе шины.

Типичным представителем первого способа может служить классическая фон-Неймановская ВМ (рис.3). В ней между взаимодействующими устройствами (процессор, память, устройство ввода/вывода) имеются непосредственные связи. Особенности связей (число линий в шинах, пропускная способность и т. п.) опре­деляются видом информации, характером и интенсивностью обмена. Достоинством архитектуры с непосредственными связями можно считать возможность развязки «узких мест» путем улучшения структуры и характеристик, только определенных связей, что экономически может быть наиболее выгодным решением. У фон-Неймановской ВМ таким «узким местом» является канал пересылки данных между и памятью, и «развязать» его достаточно непросто . Кроме того, ВМ с непосредственными связями плохо поддаются реконфигурации.

В варианте с общей шиной все устройства вычислительной машины подключе­ны к магистральной шине, служащей единственным трактом для потоков команд, данных и управления (рис.4). Наличие общей шины существенно упрощает реа­лизацию ВМ, позволяет легко менять состав и конфигурацию машины. Благодаря этим свойствам шинная архитектура получила широкое распространение в мини-, и микроЭВМ. Вместе с тем, именно с шиной связан и основной недостаток архи­тектуры: в каждый момент передавать информацию по шине может только одно устройство. Основную нагрузку на шину создают обмены между процессором и памятью, связанные с извлечением из памяти команд и данных и записью в па­мять результатов вычислений. На операции ввода/вывода остается лишь часть пропускной способности шины. Практика показывает, что даже при достаточно быстрой шине для 90% приложений этих остаточных ресурсов обычно не хватает, особенно в случае ввода или вывода больших массивов данных.

 

 

Рис.7. Структура вычислительной машины на базе общей шины

 

В целом с

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...