Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Репертуар эволюционных «решений» ограничен

Когда Н. И. Вавилов обнародовал «закон гомологических рядов в наследственной изменчивости», утверждающий, что у близких видов наблюдаются сходные ряды изменчивости, то немедленно был обвинен в антидарвиновских настроениях. Действительно, если мутации случайны, то и эволюционные траектории, казалось бы, тоже должны быть случайными. Их направление должно бы зависеть только от внешних условий, к которым вид обязан как следует приспособиться. Сходные адаптивные (полезные) признаки можно объяснить сходной направленностью отбора, тогда как у нейтральных признаков — тех, что не влияют на приспособленность, — появление сходства маловероятно. Параллельные признаки, которыми оперировал Вавилов (а он работал с признаками зерновых культурных растений), нейтральны, и в этом случае сходству репертуара изменчивости вроде бы неоткуда взяться. Тем не менее гомологические ряды существуют (Н. И. Вавилов был строг с фактами), так что довольно долго о законе гомологических рядов предпочитали не рассуждать.

Но постепенно стало ясно, что фактов параллельной эволюции как на микро-, так и на макроуровне такое колоссальное изобилие, что ими нужно и должно заниматься всерьез. Генетики взялись за расшифровку путей формирования параллелизмов.

Наиболее значимые выводы о генетических механизмах параллельной эволюции основаны на анализе отдельных признаков, как адаптивных, так и нейтральных. К первым относится, например, развитие устойчивости к антибиотикам у бактерий или цветового зрения у цихлид (см. главу б). Ко вторым, нейтральным признакам можно отнести независимое появление темных пятнышек на крыльях у разных видов дрозофил — чем не гомологические ряды Н. И. Вавилова (см. главу 5)!

Вот важнейшие выводы, которые генетики сделали на основе детально изученных примеров:

 

• эволюция отчасти предсказуема, хотя в ее основе лежат случайные мутации;

• число возможных эволюционных траектории ограниченно, так как ограниченно число жизнеспособных комбинации мутационных изменении (из-за эпистаза, см. главу 1);

• сходные приспособления могут появляться в результате параллельного образования одинаковых мутаций в том или ином гене;

• сходные приспособления могут появляться в результате разных наборов мутаций в одном и том же комплексе генов;

• параллельные приспособления появляются чаще в результате изменений в регуляторных, а не белок-кодирующих участках генов.

 

Рассмотрим один из недавно «расшифрованных» случаев параллельной эволюции. Этот пример показывает, как легко появляются сходные признаки у разных видов ( McGrath et al., 2011 ). Генетики из университетов Юты, Флориды и Рокфеллеровского университета работали с уже знакомыми нам объектами — нематодой Caenorhabditis elegans и с ее родственницей C. briggsae . В их распоряжении были разные линии C. elegans , которые хотя и произошли от одной исходной гермафродитной особи, но велись изолированно в последние 50 лет. Этот материал позволил проследить образование параллельных мутаций как у особей со сходным геномом, так и у разных видов.

Ученых интересовал конкретный признак — формирование так называемой дауэровской, или «спящей», личинки. Спящая личинка у ценорабдитис образуется при стрессовых температурах, недостатке пищи или перенаселении. В таком состоянии нематода благополучно переживает худшие времена, а при улучшении условий начинает развитие с прерванной точки, т. е. с третьей линьки. В природе перенаселение грозит популяции голодом и потому воспринимается как сигнал к формированию спящей личинки. В лабораторных условиях при перенаселении (а как же иначе может быть в культурах?) дауэровская личинка все равно формируется, хотя пища всегда в изобилии. При этом подавляющая часть популяции перестает размножаться — «в строю» остаются лишь те особи, которые почему-либо не среагировали на сигнал перенаселения. Ясно, что именно они и получат преимущество в изобильной лабораторной среде. Именно поэтому в лабораторных культурах нематоды довольно быстро перестают реагировать на сигнал перенаселения и формировать спящую личинку. Авторы изучили три лабораторные популяции, параллельно утратившие спящую стадию: две популяции C. elegans и одну C. briggsae . Естественно, ученые хотели выяснить, за счет каких мутаций в трех разных линиях появилось это адаптивное новшество.

Дауэровская личинка начинает формироваться при повышении концентрации особого феромона (чем больше животных в культуре, тем выше его концентрация). Этот феромон вызывает формирование спящей личинки у исходной лабораторной линии C. elegans , зато не действует на две эволюционировавшие линии нематоды.

Из сравнения геномных последовательностей исходной популяции и двух других выяснилось, что феромон перестал работать из-за выпадения (делеции) генов двух рецепторов. Ясно, что если исчезают рецепторы к определенному веществу, то исчезает и реакция на это вещество, в данном случае — не формируется дауэровская личинка. В двух лабораторных линиях делеция прошлась по разным нуклеотидам, но в обоих случаях захватила оба гена. Таким образом, в двух популяциях независимо вышли из строя одни и те же гены, играющие роль посредников между феромоном и формированием дауэровской личинки.

У C. briggsae нашелся ген, родственный двум найденным посредникам. И, как легко догадаться, в лабораторной популяции, отказавшейся от спящей личинки, именно этот ген оказался вырезан делецией. Сколько ни добавляли феромона (того самого, с которым работали на C. elegans ), все личинки C. briggsae развивались своим чередом, не впадая в спячку. Зато на исходную (дикую) популяцию C. briggsae феромон действовал отлично.

Таким образом, в условиях, когда спящая личинка оказывается лишней или даже вредной, популяция быстро от нее избавляется. При этом отбор поддерживает мутации в сходных генах, приводящие эти гены в нерабочее состояние. Скорее всего, существует не так уж много мутаций, которые способны предотвратить формирование спящей стадии и одновременно не слишком вредны для животного. Для данного признака доступное решение, по-видимому, оказалось единственным.

 

 

Спящая личинка Caenorhabditis elegans (белая стрелка) в много клеточном плодовом теле почвенной амебы Dictyostelium .

 

Конечно, безопаснее изменить один рецептор, чем подстраивать друг под друга целую сеть регуляторов развития. Сенсорные рецепторы — световые, вкусовые, обонятельные — эволюционируют очень быстро, оперативно подлаживая организм к окружающей обстановке. Этот простой и быстрый путь не приводит немедленно к глубоким изменениям развития. Но он может открыть перед организмами новые эволюционные возможности. Например, изменения генов, кодирующих светочувствительные белки опсины, могут изменить цветовое восприятие, что в свою очередь скажется на эволюции внешнего вида животных под действием полового отбора (подробнее об этом мы поговорим в главе 5).

—————

 

 

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...