Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Изменения белок-кодирующих генов

 

ЗАКОН НЕОБРАТИМОСТИ ЭВОЛЮЦИИ ОБЪЯСНЕН НА МОЛЕКУЛЯРНОМ УРОВНЕ.

Закрепление мутаций в белок-кодирующих областях генов, может, и не самый распространенный способ появления эволюционных новшеств, зато самый понятный и очевидный. В предыдущих главах мы уже рассмотрели примеры таких событий. Здесь мы познакомимся еще с двумя случаями, из которых следуют интересные выводы общего характера.

Первый пример связан с идеей о необратимости эволюции. Она была высказана несколькими авторами, включая Дарвина, еще в XIX веке и с тех пор часто обсуждалась. Такие дискуссии обычно опираются на общефилософские идеи и примеры из палеонтологии и сравнительной анатомии («некоторые наземные позвоночные вернулись в воду, но обратно в рыб не превратились — стало быть, эволюция необратима»). Между тем вопрос важен для понимания базовых свойств эволюции, таких как соотношение в ней случайного и закономерного. Если бы любое изменение можно было обратить вспять, то естественный отбор мог бы быстрее и эффективнее оптимизировать строение организмов, подгоняя их под условия среды без оглядки на их эволюционную историю. Действительно, если какой-то путь оказался неудачным, можно вернуться к началу и попробовать пройти снова другой дорожкой. Необратимость большинства эволюционных изменений, напротив, свидетельствовала бы о том, что эволюционная история накладывает жесткие ограничения на возможности дальнейшей эволюции. Впрочем, оценить степень необратимости того или иного эволюционного события на практике трудно.

В 2009 году Джозеф Торнтон из Орегонского университета и его коллеги на примере глюкокортикоидного рецептора позвоночных (ГР) [67]в деталях изучили вопрос, как и почему эволюционные изменения белка могут стать необратимыми ( Bridgham et al., 2009 ). Исследователи использовали целый арсенал новейших методов. Начали они со сравнения аминокислотных последовательностей 60 рецепторов стероидных гормонов разных организмов. Они реконструировали эволюционную историю ГР и восстановили аминокислотную последовательность этого белка, какой она была в важнейших узлах (точках ветвления) эволюционного дерева позвоночных.

Выяснилось, что ключевые события в эволюции ГР произошли 400 млн лет назад и были приурочены к отрезку между узлами дерева, соответствующими: 1) разделению предков хрящевых рыб и прочих челюстноротых позвоночных; 2) разделению линий лучеперых и лопастеперых рыб (предки последних по совместительству являются также и предками наземных позвоночных).

Восстановленные аминокислотные последовательности, соответствующие этим двум узлам, авторы назвали AncGR1 и AncGR2. Первый белок был у последнего общего предка челюстноротых (к челюстноротым относятся хрящевые рыбы, костные рыбы и их потомки — наземные позвоночные). Обладателем второго белка был последний общий предок костных рыб и тетрапод, который жил на 40 млн лет позже.

Затем авторы искусственно синтезировали гены ГР этих давно вымерших предков и заставили их работать в культуре клеток китайского хомячка. Вместе с «воскрешенными» генами ГР в клетки был внедрен заимствованный у светлячков ген фермента люциферазы, благодаря которому светлячки светятся. Регуляторная область этого гена была сконструирована таким образом, чтобы синтез люциферазы зависел от активности ГР. В результате можно было по силе свечения оценивать эффективность реагирования ГР на те или иные стероидные гормоны.

Выяснилось, что белок AncGR1 был слабо специализированным рецептором, который реагировал на широкий круг так называемых минералокортикоидов. Он реагировал также и на кортизол, но слабо. Белок AncGR2, напротив, был специализированным рецептором, избирательно реагирующим на кортизол (как и современные ГР человека и других наземных позвоночных).

При переходе от AncGR1 к AncGR2 за 40 млн лет эволюции в белке произошло 37 аминокислотных замен. Ключевую роль в смене функции рецептора сыграли две из них. Первая (замена серина пролином в позиции 106) изменила конфигурацию активного центра таким образом, что аминокислота, находящаяся в 111-й позиции, оказалась рядом с уникальной гидроксильной группой кортизола, которая отсутствует у других стероидных гормонов. Вторая замена произошла как раз в 111-й позиции и привела к тому, что молекула кортизола стала прикрепляться к активному центру рецептора дополнительной водородной связью. В дальнейшем произошло еще три замены, которые усилили новую функцию ГР (избирательное связывание кортизола), снизив его сродство к минералокортикоидам. У этих трех замен, однако, был вредный побочный эффект: они снизили стабильность пространственной конфигурации белка. Чтобы они смогли зафиксироваться, должно было произойти еще две замены, которые авторы назвали «разрешающими» — в том смысле, что они сгладили вредные эффекты других замен и позволили им закрепиться.

Таким образом, для смены функции ГР понадобилось семь аминокислотных замен — две «ключевые», три «оптимизирующие» и две «разрешающие». Эксперименты подтвердили, что, если внести в белок AncGR1 соответствующие семь изменений, белок приобретает новую функцию: начинает избирательно связывать кортизол и перестает реагировать на минералокортикоиды. Такой белок (AncGR1 с семью заменами) функционирует почти так же, как AncGR2, который, как мы помним, отличается от AncGR1 не семью, а 37 заменами. Остальные 30 замен либо являются нейтральными, либо чуть-чуть оптимизируют белок.

Однако дальнейшие исследования показали, что некоторые из этих 30 «не очень нужных» замен, без которых белок ГР вполне мог бы обойтись, имели важный побочный эффект. Они закрыли для белка возможность возврата к исходной функции, т. е. сделали произошедшее ранее изменение необратимым!

Пока новая функция ГР обеспечивалась только семью аминокислотными заменами («ключевыми», «оптимизирующими» и «разрешающими»), эволюция ГР еще могла повернуть вспять. Для этого было достаточно изменить направленность отбора. Допустим, древним позвоночным — предкам костных рыб и тетрапод — вдруг стало бы выгодно, чтобы их ГР снова начал реагировать на минералокортикоиды. В этом случае могли бы сначала вернуться в исходное состояние «оптимизирующие» мутации. Это привело бы к небольшому увеличению чувствительности ГР к минералокортикоидам, и поэтому такое изменение могло быть поддержано отбором. В дальнейшем можно было бы ожидать обращения вспять двух «ключевых» мутаций — это привело бы к полному восстановлению прежней функции.

Итак, если внести в белок AncGR1 семь мутаций, он меняет функцию: начинает избирательно реагировать на кортизол и перестает обращать внимание на минералокортикоиды. Если вернуть эти семь аминокислот в исходное состояние, белок вернется к своей исходной функции. На этом этапе эволюция еще обратима. Однако когда авторы вернули в исходное состояние те же семь аминокислот в белке AncGR2, возврата к прежней функции не произошло. Вместо этого получился абсолютно бесполезный белок, который не реагировал ни на кортизол, ни на минералокортикоиды. Причина, очевидно, в тех 30 «дополнительных» мутациях, которые отличают AncGR2 от AncGR1.

Детальный анализ показал, что как минимум пять из этих 30 аминокислотных замен мешают возврату белковой молекулы к исходной конфигурации, необходимой для связывания минералокортикоидов. Пользы от этих замен было не очень много: они лишь слегка повысили стабильность новой конфигурации, необходимой для связывания кортизола. Но они тем не менее зафиксировались, потому что естественный отбор «видит» только сиюминутную выгоду, пусть и небольшую, и не может заглянуть на шаг вперед. Таким образом, отрезание пути к отступлению — своеобразное эволюционное сжигание мостов — оказалось случайным побочным эффектом мелких, второстепенных улучшений новой функции.

Возврат этих пяти мутаций в исходное состояние крайне маловероятен, потому что организм не получает от этого никакой мгновенной выгоды: новая функция начинает выполняться чуть хуже, старая не восстанавливается. А пока эти пять мутаций не вернутся в исходное состояние, остается невозможной (т. е. однозначно вредной) реверсия тех семи аминокислотных замен, которые обеспечили смену функции белка. Таким образом, перед нами нагляднейший пример эпистаза, превращающего ландшафт приспособленности в труднопроходимый лабиринт, о чем мы говорили в главе 1.

Сколько интересных возможностей было безвозвратно потеряно в ходе эволюции из-за недальновидности ее главного распорядителя — естественного отбора? Точного ответа нет, но очень может быть, что потерянных возможностей было больше, чем реализованных.

 

КАК МУХИ РАЗУЧИЛИСЬ ЖИТЬ БЕЗ КАКТУСОВ.

Многие организмы приспособлены к узким экологическим нишам, т. е. могут жить только в крайне ограниченном диапазоне условий. Помимо общих и неочевидных соображений о том, что «узкая специализация — путь к совершенству», о механизмах эволюционного становления специалистов известно не так уж много. Мухи-дрозофилиды являются хорошим объектом для таких исследований по двум причинам. Во-первых, к ним относится изученная вдоль и поперек Drosophila melanogaster , для которой разработаны эффективные исследовательские методики. Во-вторых, среди видов этого семейства есть как непритязательные генералисты, способные жить в разнообразных условиях, так и узкие специалисты.

Ярким представителем последних является Drosophila pachea . Личинки этих мух живут только на одном виде кактуса — Lophocereus schottii . В лаборатории они отказываются расти на стандартных питательных средах, но, если добавить в корм экстракт кактуса, развитие происходит нормально. Генетики из Франции, США и Японии выяснили причину столь удивительной кактусозависимости и, следовательно, генетическую подоплеку узкой специализации ( Lang et al., 2012 ).

Рост насекомых регулируется стероидным гормоном экдизоном. Чтобы синтезировать экдизон, сначала нужно превратить холестерол в 7-дегидрохолестерол (7DHC). Кактусовые мухи D. pachea не способны осуществлять эту реакцию. Именно поэтому они и погибают на стандартном корме. Если же добавить в корм 7DHC, личинки развиваются нормально, и никаких кактусов им уже не требуется.

В кактусе L. schottii содержится несколько специфических стеролов, в том числе латостерол, которого нет ни в одном другом растении пустыни Сонора. Логично предположить, что именно эти стеролы необходимы мухам. Может быть, мухи используют их вместо холестерола в качестве сырья для синтеза экдизона? Эксперименты подтвердили это предположение.

Превращение холестерола в 7DHC у насекомых катализируется ферментом NVD. Оказалось, что у кактусовых мух этот фермент отличается от своих аналогов у других насекомых. В том числе отличаются пять консервативных аминокислот, которые у всех или почти всех других насекомых одинаковы. Сложные эксперименты с трансгенными мухами показали, что версия фермента, характерная для кактусовых мух, успешно синтезирует 7DHC из латостерола, но не из холестерола. «Стандартная» версия фермента может превращать в 7DHC оба вещества: и холестерол, и латостерол.

Судя по всему, предки кактусовых мух D. pachea имели «стандартную» версию фермента NVD, которая синтезировала 7DHC из холестерола. Фермент мог работать и с латостеролом, но эта способность оставалась невостребованной, пока мухи не начали осваивать кактус в качестве субстрата для развития личинок. Переход на новое кормовое растение позволил мухам уйти от конкуренции с близкими видами и предоставил в их распоряжение альтернативное сырье для производства 7DHC — латостерол. После этого в генофонде D. pachea закрепились мутации, лишившие NVD способности работать с холестеролом. Так мухи попали в зависимость от кактуса.

Немаловажный вопрос: почему эти мутации закрепились? Здесь возможно два сценария. Мутации могли быть нейтральными, т. е. не приносящими ни вреда, ни пользы. Например, они могли «подпортить» фермент, лишив его способности работать с холестеролом, но сохранив возможность работы с латостеролом. В условиях изобилия латостерола такое повреждение не принесло бы вреда. В этом случае мутации могли закрепиться случайно — за счет генетического дрейфа. Второй, более интересный сценарий предполагает, что мутации были полезными, что они повысили приспособленность кактусовых мух. В этом случае они должны были закрепиться под действием отбора, т. е. не случайно, а закономерно.

Два факта указывают на то, что события развивались по второму сценарию (мутации были полезными). Во-первых, трансгенные D. melanogaster , которым их собственный ген nvd заменили на его аналог, заимствованный у D. pachea , развивались на корме с латостеролом лучше, чем контрольные мухи. Это значит, что вариант nvd , характерный для D. pachea , дает мухам преимущество при наличии в среде латостерола. Во-вторых, у D. pachea тот участок хромосомы, где находится ген nvd , несет следы действия положительного отбора, с которыми мы ознакомились в главе 2 (см. раздел «Следы естественного отбора»).

 

 

Кактус Lophocereus schottii и муха Drosophila pachea , которая не может без него жить.

 

Исследование показало, что для развития узкой экологической специализации, а также для появления нового структурного компонента экосистемы — неразрывной связи мухи с кактусом — достаточно изменения одного-единственного белка.

В какой момент появилось нечто новое — новый специализированный вид, новая экологическая связь? Может быть, это произошло, когда муха-прародительница случайно отложила яйца на кактус, а личинки ухитрились выжить и запомнили запах родного растения? Или когда у более поздних прародителей зарепилась первая мутация, затруднившая синтез 7DHC из холестерола? Вряд ли на такой вопрос можно дать однозначный ответ. Новое зарождается исподволь, из цепочки крошечных, пустяковых изменений. Так же и в человеческих делах — трудно отследить момент, когда и как появляется изобретение: может, тогда, когда в случайном разговоре мелькнула нужная фраза, или в окне соседнего дома ученый увидел намек на нужную форму, или приятель подсказал хорошую идею совсем из другой области… и вот уже ученый вовсю работает, улучшает, подлаживает, ищет лучшие решения для воплощения идеи во всей своей красе.

 

Изменения регуляции генов

 

Не всякое новшество требует изменений белок-кодирующих участков ДНК. В основе многих эволюционных преобразований лежат мутации регуляторных некодирующих участков, от которых зависит, где, когда, при каких условиях и с какой интенсивностью будет работать близлежащий ген. Изучать такие эволюционные изменения технически намного труднее, но и на этом фронте биологи в последние годы добились важных успехов.

 

ЗАГАДКА УЗОРЧАТЫХ КРЫЛЬЕВ.

Плодовые мушки рода Drosophila — идеальный объект для изучения эволюции сложных признаков. В этой группе перемешаны не только узкие и широкие экологические специалисты, но и виды с разнообразными морфологическими признаками. Причем характер родственных связей между видами установлен вполне надежно (т. е. известно, кто от кого и когда произошел), и можно проследить, как в ряду потомков видоизменялся тот или иной сложный признак.

Например, у D. guttifera на крыльях имеется замысловатый узор, которого нет у других дрозофил. Узор состоит из 16 черных пятен, расположенных в строго определенных местах на продольных жилках и в точках соединения продольных жилок с поперечными, и нескольких серых «теней» между жилками. У родственников D. guttifera крылья либо вовсе не окрашены, либо имеют гораздо более простой орнамент. Очевидно, сложная окраска крыльев D. guttifera — недавнее эволюционное приобретение.

Шон Кэрролл, американский генетик и автор превосходных научно-популярных книг, и его коллеги из Висконсинского университета решили выяснить, какие генетические изменения ответственны за появление у D. guttifera затейливого орнамента на крыльях. Ранее эта исследовательская группа установила, что независимое появление простых темных пятен на крыльях у разных видов дрозофил связано с изменениями регуляторных участков гена yellow , который управляет синтезом пигмента меланина и отвечает за пигментацию разных частей тела. Об этом исследовании рассказано в книге «Рождение сложности» ( Марков, 2010. С. 344 ).

Выяснилось, что на стадии куколки yellow работает как раз в тех участках крыла, где впоследствии появятся темные пятна. Следовательно, у этого вида, как и у других дрозофил, формирование пятен идет под управлением yellow . Однако у D. guttifera распределение областей экспрессии yellow по крылу отличается особой сложностью.

Нужно было понять, что заставляет yellow работать в одних частях крыла и не работать в других. Зная, что узоры на крыльях дрозофил зависят от некодирующих регуляторных участков yellow , авторы принялись искать эти участки [68]. Они отсеквенировали фрагмент генома D. guttifera длиной в 42 тыс. пар нуклеотидов, включающий ген yellow и его окрестности. Затем они подразделили некодирующие области на 28 перекрывающихся кусочков и стали изучать их свойства при помощи генно-инженерных экспериментов. Каждый кусочек по очереди присоединяли к гену зеленого флуоресцирующего белка (GFP) и вставляли эту конструкцию в геном D. guttifera , а затем смотрели, где будет вырабатываться GFP Таким непростым способом удалось выявить регуляторный участок длиной в 277 пар нуклеотидов, который заставляет присоединенный к нему ген включаться как раз в тех 16 точках развивающегося крыла, где у диких мух D. guttifera включается ген yellow и формируются пятна на жилках. Этот регуляторный участок находится на расстоянии около 5 тыс. пар нуклеотидов перед началом кодирующей части yellow . Таким образом, один-единственный регуляторный элемент контролирует формирование всех 16 пятен.

Тем же способом был выявлен еще один регуляторный участок, который отвечает за серые «тени» между жилками. Этот участок длиной в 414 пар нуклеотидов расположен в первом интроне гена yellow . Если присоединить его к гену светящегося белка и вставить в геном D. guttifera , у куколки начинают светиться те участки крыла, где должны быть «тени».

Следовательно, всего лишь два регуляторных элемента определяют все распределение областей экспрессии yellow по крыловой пластинке (хотя в принципе каждое пятнышко могло бы определяться своим собственным регуляторным элементом). Первый из обнаруженных элементов авторы назвали vs ( vein spot — «пятна на жилках»), второй — iv ( intervein shade — «тени между жилками»). Эти элементы действуют как переключатели. Первый из них срабатывает там, где должны сформироваться пятна, второй — в местах образования будущих «теней».

Таким образом, «нижняя» часть регуляторного каскада была в общих чертах расшифрована. Распределение пятен по крылу определяется элементами vs и iv . Срабатывание переключателей vs и iv активирует ген yellow . Ген yellow включает синтез меланина. Синтез меланина приводит к формированию пятна на крыле.

Этого уже было бы достаточно для хорошей статьи. Но авторы не остановились на достигнутом и продвинулись еще на один шаг вверх по регуляторному каскаду. Им удалось выяснить, на какой сигнал реагирует переключатель vs — что заставляет его включаться в нужном месте и в нужное время.

Не имея никаких подсказок, подступиться к такой задаче непросто, ведь в принципе присоединяться к элементу vs , запуская экспрессию yellow , мог бы любой из многих сотен регуляторных белков (транскрипционных факторов), а на работу этого неизвестного белка наверняка влияют еще какие-то факторы. Авторы, однако, добыли подсказку, изучая отклонения от нормального хода развития в лабораторной популяции мух D. guttifera . Они заметили, что пятна жестко привязаны к определенным опорным точкам на крыловой пластинке. Такими опорными точками являются поперечные жилки и места их соединения с продольными жилками, окончания продольных жилок, а также колоколовидные сенсиллы — рецепторы, расположенные на продольных жилках. Если у мутантной мухи на крыле появляется новая сенсилла или новое место соединения жилок, это всегда приводит к формированию нового пятна. Если, наоборот, сенсилла теряется, то исчезает и соответствующее пятно.

Следовательно, сложный рисунок на крыльях связан с предшествующей «разметкой» крыловой пластины, которая определяет ее структуру. Это позволило сузить круг поиска. Генетическая разметка развивающегося эмбриона или куколки осуществляется небольшим набором генов — ключевых регуляторов развития. Возможно, какой-то из них взаимодействует — прямо или опосредованно — с переключателем vs .

Чтобы найти искомый ген, авторы пересадили элемент vs , присоединенный к гену GFP, в геном мухи D. melanogaster — классического лабораторного объекта, чья генетика развития изучена гораздо лучше, чем у D. guttifera . Оказалось, что у D. melanogaster элемент vs срабатывает у основания крыла и на поперечных жилках, но не работает вблизи колоколовидных сенсилл. Точно так же распределены у этого вида и области экспрессии гена wingless — одного из важнейших регуляторов индивидуального развития. На ранних этапах онтогенеза членистоногих wingless участвует в глобальной разметке туловища, формировании конечностей, определяет границы сегментов. На поздних стадиях развития куколки wingless занят менее грандиозными проектами, участвуя в том числе в оформлении некоторых деталей строения крыльев.

Пересаженный от D. guttifera элемент vs сработал в крыле куколки D. melanogaster ровно в тех местах, где активен ген wingless . Это делает wingless хорошим кандидатом на роль «входного сигнала», активирующего vs и включающего yellow . Авторы проверили, как распределены области экспрессии wingless в крыле D. guttifera , и убедились, что все сходится: у вида с пятнистыми крыльями wingless на стадии куколки работает как раз в тех участках крыла, где позже формируются пятна.

Чтобы окончательно убедиться в том, что активность wingless является достаточным условием для появления пятен у D. guttifera , авторы провели еще одну серию генно-инженерных экспериментов. На этот раз в эмбрионы D. guttifera впрыскивали ген wingless , взятый у D. melanogaster и соединенный с регуляторным участком, заимствованным у дрожжей. Смысл заключался в том, чтобы получить трансгенных мух D. guttifera , у которых области экспрессии wingless в крыльях были бы расположены как-то иначе. В конце концов такие мухи были получены: у них возникла новая область экспрессии wingless вдоль одной из продольных жилок. В полном соответствии с теоретическими ожиданиями у этих мух появилась и новая темная полоса на крыльях, идущая вдоль этой жилки.

Авторы также проанализировали пигментацию крыльев, экспрессию wingless и наличие или отсутствие регуляторного элемента vs у других видов дрозофил. В итоге удалось восстановить ход эволюции узора на крыльях.

 

 

Слева — эволюционное дерево, показывающее родственные отношения между видами дрозофил с различными узорами на крыльях. Самый сложный орнамент — у D. guttifera . Справа — схема эволюции узора. Из Werner et al., 2010 .

 

Исходно у дрозофил ген wingless экспрессировался вдоль поперечных жилок, но не работал у концов продольных жилок и в колоколовидных сенсиллах. В гене yellow не было регуляторного элемента vs , способного реагировать на wingless , а крылья не имели орнамента. Это исходное состояние сохранилось у D. melanogaster . Затем в одной из групп дрозофил появился элемент vs, что привело к формированию связи между экспрессией wingless и пятнами на крыльях [69]. Первые темные пятна поэтому появились там, где исходно экспрессировался wingless , — вдоль поперечных жилок.

 

 

После того как пигментация стала зависеть от wingless , у эволюции появилась возможность создавать новые узоры, меняя экспрессию этого гена. Ген wingless имеет сложную и пока еще слабо изученную систему регуляции, но в целом его работа ориентируется на базовую разметку и ключевые «опорные точки» развивающегося организма. Эта привязанность wingless к опорным точкам сохранилась и в ходе дальнейших изменений его экспрессии в крыльях. У некоторых видов возникли новые области экспрессии wingless на концах продольных жилок, и там появились пятна. Только у одного вида — D. guttifera — орнамент крыльев усложнился еще сильнее за счет появления дополнительных областей экспрессии wingless в шести колоколовидных сенсиллах.

Получается, что замысловатый орнамент крыльев D. guttifera развился на основе существовавшего ранее плана строения крыла. Возможно, примерно таким же образом, отталкиваясь от опорных точек морфогенетической разметки крыла, сформировались узоры на крыльях и у других насекомых, включая бабочек. Но, чтобы это доказать, придется еще немало потрудиться.

Здесь мы видим, как изменение двух регуляторных участков одного гена (гена yellow ) привело к формированию сложного признака. Изменение это было таково, что направило уже существующий регуляторный каскад по новому маршруту: старые персонажи в новой пьесе.

 

—————

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...