Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Этапы развития атомистической концепции. Постулаты Бора.

Основные этапы развития представлений о пространстве и времени.

Законы Ньютона и их связь со свойствами пространства и времени.

Симметрия и законы сохранения в классической механике.

Закон сохранения импульса.

Закон сохранения момента импульса.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через
и
По третьему закону Ньютона
Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны:

Применим к этим телам второй закон Ньютона:

где
и
– импульсы тел в начальный момент времени, а
и
– импульсы тел в конце взаимодействия. Из этих соотношений следует:

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, то есть векторную сумму импульсов всех тел, входящих в эту систему.

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения.

В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

 

Закон сохранения энергии. Потенциальная и кинетическая энергия.

Энергия- характеристика состояния тела. Кинетическая энергия - энергия движущегося тела. Если на тело массой m действует постоянная сила P, совпадающая с направлением движения, то работа A=F·s.

Работа - мера изменения энергии.

Потенциальная энергия - энергия взаимодействия. Она характеризует способность тела совершать работу за счет его нахождения в поле действия сил. Потенциальная энергия не зависит от скорости, а зависит от координаты тела (от высоты).

Сумму кинетической и потенциальной энергий тела называют его полной механической энергией.

Закон сохранения энергии – в изолированной системе тел, между которыми действуют лишь силы тяготения и упругости, полная механическая энергия остается неизменной .Пример – шар кинули на землю, при его падении полная механическая энергия не меняется, при этом потенциальная энергия будет уменьшаться, а кинетическая будет возрастать.

Уравнение состояния.

Уравнение состояния — уравнение, связывающее между собой термодинамические параметры системы, такие, как температура, давление, объём, химический потенциал и др. Уравнение состояния можно написать всегда, когда можно применять термодинамическое описание явлений. При этом реальные уравнения состояний реальных веществ могут быть крайне сложными.Уравнение состояния системы не содержится в постулатах термодинамики и не может быть выведено из неё. Оно должно быть взято со стороны (из опыта или из модели, созданной в рамках статистической физики). Термодинамика же не рассматривает вопросы внутреннего устройства вещества.
Заметим, что соотношения, задаваемые уравнением состояния, справедливы только для термодинамического равновесия.
16. Первое начало термодинамики представляет собой закон сохранения энергии, один из всеобщих законов природы. Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях. Первое начало термодинамики представляет собой постулат - оно не может быть доказано логическим путем или выведено из каких-либо более общих положений. Истинность этого постулата подтверждается тем, что ни одно из его следствий не находится в противоречии с опытом. Приведем еще некоторые формулировки первого начала термодинамики:
Полная энергия изолированной системы постоянна;

Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой А и изменением внутренней энергии системы ∆U.

Первое начало термодинамики.

Последнее изменение этой страницы: 2016-08-11

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...