Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Последовательный интерфейс — СОМ-порт

Универсальный внешний последовательный интерфейс — СОМ-порт (Com­munications Port — коммуникационный порт) присутствует в PC начиная с пер­вых моделей. Этот порт обеспечивает асинхронный обмен по стандарту RS-232C. СОМ-порты реализуются на микросхемах универсальных асинхронных приемо­передатчиков. (UART), совместимых с семейством i8250. Они зани­мают в пространстве ввода-вывода по 8 смежных 8-битных регистров и могут рас­полагаться по стандартным базовым адресам 3F8h (COM1), 2F8h (COM2), 3E8h (COM3), 2E8h (COM4). Порты могут вырабатывать аппаратные прерывания IRQ4 (обычно используются для СОМ1 и COM3) и IRQ3 (для COM2 и COM4). С внешней стороны порты имеют линии последовательных данных передачи и при­ема, а также набор сигналов управления и состояния, соответствующий стандар­ту RS-232C. СОМ-порты имеют внешние разъемы- DB25P или DB9P, выведенные на заднюю панель компьютера. Характерной особенностью интерфейса является применение «не ТТЛ» сигналов — все внеш­ние сигналы порта двуполярные. Гальваническая развязка отсутствует — схемная земля подключаемого устройства соединяется со схемной землей компьютера. Скорость передачи данных может достигать 115 200 бит/с.

Компьютер может иметь до четырех последовательных портов СОМ 1-COM4 (для машин класса AT типично наличие двух портов) с поддержкой на уровне BIOS. Для повышения производительности широко используется взаимодей­ствие программ с портом на уровне регистров.

Название порта указывает на его основное назначение — подключение коммуника­ционного оборудования (например, модема) для связи с другими компьютерами, сетями и периферийными устройствами. К порту могут непосредственно подклю­чаться и периферийные устройств с последовательным интерфейсом: принтеры, плоттеры, терминалы и другие. СОМ-порт широко используется для подклю­чения мыши, а также организации непосредственной связи двух компьютеров. К СОМ-порту подключают и электронные ключи.

В современных системных платах практически отсутствуют адаптеры СОМ-портов. Существуют карты расширения с парой СОМ-портов, где они чаще всего соседствуют с LPT-портом, а также с контроллерами дисковых интер­фейсов (FDC+IDE). Если возникает потребность в большом количестве последо­вательных интерфейсов, то в ПК можно установить специальные адаптеры-муль­типлексоры. Это весьма дорогие карты, они выпускаются обычно на 4,8,12 и даже 16 портов. Такое большое число разъемов на заднюю стенку ПК вывести пробле­матично, и у мультиплексоров обычно имеется внешний блок с разъемами (и элек­троникой), соединяемый с адаптером кабелем с многоконтактными разъемами.

 

Беспроводные интерфейсы

Беспроводные (wireless) интерфейсы позволяют освободить устройства от связы­вающих их интерфейсных кабелей, что особенно привлекательно для малогаба­ритной периферии, по размеру и весу соизмеримой с кабелями. В беспроводных интерфейсах используются электромагнитные волны инфракрасного (IrDA) и радиочастотного (Bluetooth) диапазонов. Кроме этих интерфейсов периферийных устройств существуют и беспроводные способы подключения к локальным сетям.

Инфракрасный интерфейс IrDA

Применение излучателей и приемников инфракрасного (ИК) диапазона позволяет осуществлять беспроводную связь между парой устройств, удаленных на рассто­яние до нескольких метров. Инфракрасная связь — IR (Infra Red) Connection — без­опасна для здоровья, не создает помех в радиочастотном диапазоне и обеспечива­ет конфиденциальность передачи. ИК-лучи не проходят через стены, поэтому зона приема ограничивается небольшим, легко контролируемым пространством. Инфракрасная технология привлекательна для связи портативных компьютеров со стационарными компьютерами. Инфракрасный интерфейс имеют некоторые модели принтеров, им оснащают многие современные малога­баритные устройства: карманные компьютеры (PDA), мобильные телефоны, циф­ровые фотокамеры и т. п.

Различают инфракрасные системы низкой (до 115,2 Кбит/с), средней (1,152 Мбит/с) и высокой (4 Мбит/с) скорости. Низкоскоростные системы служат для обмена короткими сообщениями, высокоскоростные — для обмена файлами между компью­терами, подключения к компьютерной сети, вывода на принтер, проекционный ап­парат и т. п. Ожидаются более высокие скорости обмена, которые позволят пере­давать «живое видео». В стандарте IrDA 1.1 обеспечиваются следующие скорости передачи:

· IrDA SIR (Serial Infra Red), HP-SIR -9,6-115,2 Кбит/с;

· IrDA HDLC, известный и как IrDA MIR (Middle Infra Red) - 0,576 и 1,152
Мбит/с;

· IrDA FIR (Fast Infra Red) - 4 Мбит/с;

Излучателем для ИК-связи является ИК-светодиод. В качестве приемника используют PIN-диоды, эффективно при­нимающие ИК-лучи. Спецификация IrDA определяет требования к мощности передатчика и чувствительности приемника, причем для приемника задается как минимальная, так и максимальная мощность ИК-лучей. Импульсы слишком малой мощности приемник не «увидит», а слишком большая мощность «ослепляет» приемник — принимаемые импульсы сольются в неразличимый сиг­нал. Кроме полезного сигнала на приемник воздействуют помехи: засветка сол­нечным освещением и лампами накаливания, дающая постоянную составляющую оптической мощности, и помехи от люминесцентных ламп, дающие переменную (но низкочастотную) составляющую. Эти помехи приходится фильтровать. Поскольку передатчик почти неизбежно вызывает засветку своего же приемника, вводя его в насыщение, приходится задействовать полудуплексную связь с опре­деленными временными зазорами при смене направления обмена. Для передачи сигналов используют двоичную модуляцию (есть свет — нет света) и различные схемы кодирования.

 

Радиоинтерфейс Bluetooth

Bluetooth (ВТ) — это фактический стандарт на миниатюрные недоро­гие средства передачи информации с помощью радиосвязи между мобильными (и настольными) компьютерами, мобильными телефонами и любыми другими портативными устройствами на небольшие расстояния. Разработкой специфика­ции занимается группа лидирующих фирм в областях телекоммуникаций, компьютеров и сетей — 3Com, Agere Systems, Ericsson, IBM, Intel, Microsoft, Motorola, Nokia, Toshiba. Спецификация Bluetooth свободно доступна в (www.bluetooth.com), правда, она весьма объемна (около 15 Мбайт PDF-файлов). Открытость спецификации должна способствовать ее быстрому распро­странению, что уже и наблюдается на практике.

Каждое устройство ВТ имеет радиопередатчик и приемник, работающие в диапазоне частот 2,4 ГГц. Этот диапазон в большинстве стран отведен для промыш­ленной, научной и медицинской аппаратуры и не требует лицензирования, что обеспечивает повсеместную применимость устройств. Для ВТ используются ра­диоканалы с дискретной частотной модуляцией, несущая частота ка­налов F=2402+k (МГц), где k=0…78. Кодирование простое — логической единице соответству­ет положительная девиация частоты, нулю — отрицательная. Передатчики могут быть трех классов мощности, с максимальной мощностью 1, 2,5 и 100 МВт, причем должна быть возможность понижения мощности с целью экономии энергии. Передача ведется с перескоком несущей частоты с одного радиоканала на другой, что помогает в борьбе с интерференцией и замираниями сигнала. Физический канал связи представляется определенной псевдослучайной последовательностью используемых радиоканалов (79 возможных частот). Группа устройств, разделяющих один канал (то есть «знающих» одну и ту же последовательность перескоков), образует так называемую пикосетъ (piconet), в которую может вхо­дить от 2 до 8 устройств. В каждой пикосети имеется одно ведущее устройство и до 7 активных ведомых. Кроме того, в зоне охвата ведущего устройства в его же пикосети могут находиться «припаркованные» ведомые устройства: они тоже «знают» последовательность перескоков и синхронизируются (по перескокам) с ведущим устройством, но не могут обмениваться данными до тех пор, пока веду­щее устройство не разрешит их активность. Каждое активное ведомое устройство пикосети имеет свой временный номер (1-7); когда ведомое устройство деактивируется (паркуется), оно отдает свой номер для использования другими. При последующей активизации оно уже может получить иной номер (потому-то он и временный). Пикосети могут перекрываться зонами охвата, образуя «разбросанную» сеть (scatternet). При этом в каждой пикосети ведущее устройство только одно, но ведомые устройства могут входить в несколько пикосетей, используя раз­ деление времени (часть времени он работает в одной, часть — в другой пикосети). Более того, ведущее устройство одной пикосети может быть ведомым устройством другой пикосети. Эти пикосети никак не синхронизированы, каждая из них ис­пользует свой канал (последовательность перескоков).

Канал делится на тайм-слоты длительностью 625 мкс, слоты последовательно нумеруются с цикличностью 227. Каждый тайм-слот соответствует одной частоте, несущей в последовательности перескоков (1600 перескоков в секунду). Последо­вательность частот определяется адресом ведущего устройства пикосети. Переда­чи ведутся пакетами, каждый пакет может занимать от 1 до 5 тайм-слотов. Ведущее и ведомые устройства ведут передачу поочередно: в четных сло­тах передачу ведет ведущее устройство, а в нечетных — адресованное им ведомое устройство.

Защита данных от искажения и контроль достоверности производится несколь­кими способами. Данные некоторых типов пакетов защищаются CRC-кодом, и при­емник информации должен подтверждать прием правильного пакета или сооб­щить об ошибке приема. Для сокращения числа повторов применяется избыточное кодирование FEC (Forward Error Correction code). В схеме FEC 1/3 каждый по­лезный бит передается трижды, что позволяет выбрать наиболее правдоподобный вариант мажорированием. Схема FEC 2/3 несколько сложнее, здесь используется код Хэмминга, что позволяет исправлять все однократные и обнаруживать все двукратные ошибки в каждом 10-битном блоке.

Канал может обеспечивать максимальную скорость 723,2 Кбит/с в асим­метричной конфигурации (оставляя для обратного канала полосу 57,6 Кбит/с) или же 433,9 Кбит/с в каждую сторону в симметричной конфигурации.

Для обеспечения безопасности в ВТ применяется аутентификация и шифрова­ние данных на уровне связи (link layer), которые, конечно же, могут дополняться и средствами верхних протокольных уровней.

Важной частью ВТ является протокол обнаружения сервисов SDP (Service Dis­covery Protocol), позволяющий устройству найти «интересного собеседника». В дальнейшем, установив с ним соединение, устройство сможет воспользоваться требуемыми сервисами (например, выводить документы на печать, подключить­ся к Сети и т. п.).

 

Последнее изменение этой страницы: 2016-08-11

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...