Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Октаэдр и его применение в различных областях

 

Октаэдр – один из пяти правильных многогранников, имеющий 8 треугольных граней, 12 рёбер, 6 вершин. Каждая его вершина является вершиной четырёх треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

В природе, в науке, в жизни этот многогранник встречается довольно часто: он находит применение в объяснении структуры и форм Вселенной, в строении ДНК и нанотехнологиях, в создании игр-головоломок.

Но чаще всего он встречается, пожалуй, в первом – в природе. А именно, в строении кристаллов. Форму октаэдра имеют кристаллы алмаза, перовскита, оливина, флюорита, шпинели, алюминиево-калиевых квасцов, медного купороса и даже хлорида натрия и золота!


 

Рис. 5. Октаэдр в природе: кристаллы в форме октаэдра Рис. 6. Алмаз  

 

Многогранники также используются в живописи. Ярчайшим примером художественного изображения многогранников в XX веке являются, конечно, графические фантазии Маурица Корнилиса Эшера (1898-1972), голландского художника, родившегося в Леувардене. Мауриц Эшер в своих рисунках как бы открыл и интуитивно проиллюстрировал законы сочетания элементов симметрии, т.е. те законы, которые властвуют над кристаллами, определяя и их внешнюю форму, и их атомную структуру, и их физические свойства.

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов.

Рис. 7. Гравюра «Звезды» Эшера

Наиболее интересная работа Эшера - гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров.


Заключение

 

В ходе данной работы было рассмотрено понятие правильных многогранников, мы узнали, что многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) все его двугранные равны; 4) в каждой его вершине сходится одинаковое число ребер.

Рассмотрев историю возникновения платоновых тел, мы узнали, что всего существуют пять правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр. Их названия из Древней Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник", "двенадцатигранник", "двадцатигранник".

Использованная литература и источники позволили более глубоко рассмотреть данную тему.

Проанализировав подробнее икосаэдр и октаэдр, а также их применение в различных областях, мы увидели, что изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр среди кристаллических форм не встречается, но его можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе о том, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников.

 


 

Список литературы

 

1. Александров А. Д. и др. Геометрия для 10-11 классов: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик. – 3-е изд., перераб. - М.: Просвещение, 1992 – 464 с.

2. Атанасян Л.С и другие. Геометрия 10 - 11.- М.: Просвещение, 2003.

3. Василевский А.Б. Параллельные проекции.- Москва, 2012.

4. Волошинов А.В. Математика и искусство.- М.: Просвещение, 2002.

5. Гончар В. В. Модели многогранников. – М.: Аким, 1997. – 64 с.

6. Дитяткин В.Г. Леонардо да Винчи.- М.: Москва, 2002.

7. Евклид. Начала.- В 3 т. М.; Л.; 1948 – 1950.

8. Математика: Школьная энциклопедия / гл. ред. Никольский С. М. – М.: Научное изд. «Большая Российская энциклопедия», 1996

9. Пидоу Д. Геометрия и искусство. - Москва, 1999.

10. Савин А. П. Энциклопедический словарь юного математика. – М.: Педагогика, 1985. – 352 с.

11. Смирнова И. М., Смирнов В. А. Геометрия, 10-11 классы: Учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни). – М.: Мнемозина, 2009


 

Приложение 1

Космологическая концепция правильных многогранников Платона

ОГОНЬ   ТЕТРАЭДР
ВОДА ИКОСАЭДР
ВОЗДУХ ОКТАЭДР
ЗЕМЛЯ ГЕКСАЭДР
ВСЕЛЕННАЯ ДОДЕКАЭДР

 


Приложение 2

Последнее изменение этой страницы: 2016-06-08

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...