Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Тяготение. Элементы теории поля. Законы Кеплера

Законы Кеплера:

1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинаковые площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Впоследствии И. Ньютон, изучая движение небесных тел, на основании законов Кеплера и основных законов динамики открыл всеобщий закон всемирного тяготения: между любыми двумя материальными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m1 и т2) и обратно пропорциональная квадрату расстояния между ними

G=6,672*10-11 2/кг2

Поле тяготения и напряженность.

 

Вектор g не зависит от m и называется напряженностью поля тяготения. Напряженность поля тяготения определяется силой, которая действует со стороны поля на материальную точку единичной массы, и совпадает по направлению с действующей силой. Напряженность есть силовая характеристика поля тяготения.

Поле тяготения называется однородным, если его напряженность во всех точках одинакова, и центральным, если во всех точках поля векторы напряженности направлены вдоль прямых, которые пересекаются в одной точке (А), которая неподвижна по отношению к какой-либо инерциальной системе отсчета

Для графического изображения силового поля используются силовые линии (линии напряженности), которые рисуются таким образом, что вектор напряженности поля направлен по касательной к силовой линии.

Работа в поле тяготения.

Определим работу, которую совершают силы поля тяготения при перемещении в поле материальной точки массой m. Вычислим, какую надо затратить работу для удаления тела массой m от Земли. На расстоянии R на тело действует сила

При перемещении этого тела на расстояние dR совершается работа

Знак минус появляется потому, что сила и перемещение в данном случае противоположны по направлению

Если тело перемещать с расстояния R1 до R2, то работа

Затраченная работа в поле тяготения не зависит от траектории перемещения, а зависит лишь от начального и конечного положения тела, т. е. силы тяготения действительно консервативны, а поле тяготения является потенциальным.

Работа, совершаемая консервативными силами, равна изменению потенциальной энергии системы, взятому со знаком минус, т. е.

(примечание: Р – это ЕР (обозначаем так))

Так как в формулы входит только разность потенциальных энергий в двух состояниях, то для удобства принимают потенциальную энергию при R2→∞ равной нулю (P2=0).

является энергетической характеристикой поля тяготения и называется потенциалом. Потенциал поля тяготения φ - скалярная величина, которая определяется потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Таким образом, потенциал поля тяготения, создаваемого телом массой М, равен

геометрическое место точек с равными потенциалами образует сферическую поверхность (R=const). Такие поверхности, для которых потенциал постоянен, называются эквипотенциальными.

Взаимосвязь φ и g

Опыт Кавендиша.

Впервые экспериментальное доказательство закона всемирного тяготения для земных тел, а также числовое определение гравитационной постоянной G проведено английским физиком Г. Кавендишем (1731—1810). Принципиальная схема опыта Кавендиша, применившего крутильные весы, представлена на рис. 37. Легкое коромысло А с двумя одинаковыми шариками массой m=729 г подвешено на упругой нити В. На коромысле С укреплены на той же высоте массивные шары массой M=158 кг. Поворачивая коромысло С вокруг вертикальной оси, можно изменять расстояние между шарами с массами т и М. Под действием пары сил, приложенных к шарам т со стороны шаров М, коромысло А поворачивается в горизонтальной плоскости, закручивая нить В до тех пор, пока момент сил упругости не уравновесит момента сил тяготения. Зная упругие свойства нити, по измеренному углу поворота можно найти возникающие силы притяжения, а так как массы шаров известны, то и вычислить значение G.

Значение G, приводимое в таблицах фундаментальных физических постоянных, принимается равным 6,6720×10–11 Н×м2/кг2, т. е. два точечных тела массой по 1 кг каждое, находящиеся на расстоянии 1 м друг от друга, притягиваются с силой 6,6720×10–11 H. Очень малая величина G показывает, что сила гравитационного взаимодействия может быть значительной только в случае больших масс.

Последнее изменение этой страницы: 2016-08-11

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...