Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Общая структура последовательностного автомата

Последовательностными автоматами называют управляющие устройства, выходные сигналы которых зависят не только от комбинации входных сигналов, имевших место в текущем такте технологического цикла, но и от комбинаций входных сигналов, имевших место в предыдущих тактах и повлиявших на внутреннее состояние автомата. Так, при перемещении рабочего органа станка по линейной траектории и достижении заданной точки рабочей зоны станка, система программного управления переходит к выполнению нового кадра программы, в котором может быть задано опять же перемещение по линейной траектории, но в другом направлении и с другой скоростью. Сигналом к переходу на отработку нового кадра программы является в этом случае совокупность сигналов датчиков положения о достижении заданной точки в пространстве.

В простейших последовательностных автоматах, которые далее будем называть просто автоматами, программа работы жестко закладывается в конструкцию автомата и определяет последовательность смены его состояний. Каждое состояние автомата характеризуется отличным от соседнего состояния способом реагирования на поступающие входные сигналы. Переход от одного состояния к другому определяется как комбинацией входных сигналов, так и конкретным состоянием, в котором находится автомат. Самым простым способом смены состояний является случай, когда все состояния пронумерованы и их смена производится в порядке возрастания (или уменьшения) номеров. Запоминание состояний автомата обычно производится с помощью двоичных элементов памяти, таких как электронный триггер (см. §5.6) или электромагнитное реле. Число состояний, которые можно запомнить с помощью совокупности из m таких элементов достигает

М=2m,

так что количество запоминающих элементов m выбирается исходя из неравенства

m ≥ log2M, (5.9)

где M – количество состояний, которые подлежат запоминанию.

Если обозначить через Х совокупность сигналов обратной связи (входных сигналов), поступающих от ТО, через Y- совокупность сигналов управления (выходных сигналов), подаваемых на ТО, через Z – совокупность внутренних управляющих сигналов, отображающих текущее состояние автомата, то окажется, что одним и тем же значениям Х соответствуют различные значения Y, если при тех же Х значения Z различны.

Общая структура последовательностного автомата приведена на рис.5.8.

 

Рис.5.8. Общая структура последовательностного автомата

 

Видно, что автомат состоит из двух основных блоков: арифметико-логического устройства (АЛУ) и устройства формирования состояний (УФС). Блок АЛУ является комбинационной частью последовательностного автомата. Он производит заданные арифметические и логические операции над входными сигналами Хt и управляющими сигналами Zt-1, причем у простейших автоматов производятся только логические операции. Устройство формирования состояний автомата (УФС), действуя посредством совокупности управляющих сигналов Zt-1, задает операции которые должно произвести АЛУ над входными сигналами Хt в текущем рабочем такте. Выходные сигналы АЛУ подразделяются на две группы: Yt и Zt , причем индекс t означает момент времени или номер такта, в котором были выработаны данные сигналы. Сигналы Yt – это управляющие сигналы, подаваемые на технологический объект, а сигналы Zt - это внутренние управляющие сигналы, характеризующие внутреннее состояние автомата. Они подаются, совместно с некоторыми сигналами Yt, в УФС и там запоминаются. Далее эти сигналы обрабатываются в соответствии с действиями, предусмотренными очередным кадром управляющей программы УП, и подаются на вход АЛУ после прихода очередного тактового импульса С на вход синхронизации. Синхронизация предотвращает подачу управляющих сигналов Zt-1 до того, как они будут полностью сформированы в УФС. После того, как они сформируются и будут поданы в АЛУ, в УФС смогут поступить новые сигналы Zt и Yt , сигналы следующего такта управления. Следовательно, управляющие сигналы Zt-1 на входе АЛУ относятся к предыдущему такту работы АЛУ, что и отражается индексом t-1.

У простейших автоматов внешняя УП после задания режима работы в УФС не поступает. Их поведение в технологическом цикле целиком определяется распределением сигналов Yt и Zt, которые поступают в УФС и там запоминаются. После подачи тактового импульса на вход С совокупность сигналов Z (часть которых может совпадать с выходными сигналами Y) поступает на входы АЛУ, задавая логические операции, которые оно должно совершить в течение нового рабочего такта. У очень простых автоматов, работающих по принципу асинхронного управления, особый генератор тактовых импульсов отсутствует, а гонка импульсов предотвращается тем, что при любых переходах из одного состояния в другое допускается изменение значения только одного сигнала из всей совокупности внутренних управляющих сигналов Z. В этом случае изменение очередного сигнала zi из совокупности Z является как бы синхронизирующим импульсом, задающим функционирование АЛУ в новом такте ti+1 работы автомата.

Алгоритм последовательностного автомата удобно составлять исходя из структурной схемы, приведенной на рис.5.8. На этой схеме АЛУ является комбинационной частью автомата, а УФС включает в себя запоминающие устройства (ЗУ), задающие посредством сигналов Zt-1 режим работы АЛУ в каждом рабочем такте автомата в течение технологического цикла. В простейших автоматах сигналы Zt-1 – это сигналы Zt и, возможно, часть сигналов Yt, сформированные в предыдущем такте автомата и запомненные в УФС. Следовательно, составление алгоритма простого автомата естественным образом разделяется на два этапа. На первом этапе составляется алгоритм функционирования АЛУ в виде

Yt = f1(Xt ,Zt-1); Zt = f2(Xt ,Zt-1)

по правилам составления комбинационных схем, а затем на втором этапе уточняется структура ЗУ в составе УФС и порядок формирования синхронизирующих импульсов. Функцию Yt принято называть функцией выходов, а функцию Zt – функцией переходов от состояния к состоянию автомата.

 

Последнее изменение этой страницы: 2016-06-09

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...