Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Основные методы и средства контроля качества изделий

Качество изделий закладывается при их конструктив­ной разработке и обеспечивается в производстве передо­вой технологией, ритмичностью производства, тщатель­ностью контроля и т. д.

Все изделия машиностроения и металлообрабатываю­щей промышленности проверяют на их соответствие ра­бочей документации и технико-эксплуатационным требо­ваниям (техническим условиям — ТУ), устанавливаемым перед разработкой изделия.

Различают следующие виды испытаний готовых изде­лий:

приемо-сдаточные, обязательные для постав­щика (изготовителя). Для проверки соответствия качества допускаются повторные испытания у потребителя — входной контроль;

периодические, также обязательные для изгото­вителя и являющиеся выборочными. Изделия для них отбираются случайной выборкой из продукции, изготовлен­ной за определенный календарный период;

типовые проводятся изготовителем после освоения каждого нового вида продукции или после изменения конструкции, технологии, материала, могущих повлиять на качество или технические характеристики продукции; аттестационные проводятся с целью присвоения продукции Знаков качества или для выдачи разрешения на право выпуска продукции, а также для установления достигнутых показателей;

эксплуатационные проводятся представителя­ми изготовителя на изделиях, находящихся в эксплуата­ции у потребителя (как правило, для сложных и дорогих мощных турбин, автоматических линий и других по­добных изделий).

Различные детали изделий проверяются как в процес­се изготовления, так и на стадии полной их готовности. Основными этапами проверки деталей являются измере­ния их линейных и угловых размеров. Существует два способа проверки таких размеров:

измерение — сравнение измеряемого размера с однородным размером, принятым за единицу, кон­троль — сравнение проверяемого размера с двумя пре­дельными однородными размерами, между которыми он должен находиться.

Контроль размеров обычно выполняется предельны­ми калибрами: пробками (гладкие отверстия), скобами (валы), резьбовыми пробками и скобами (резьбовые дета­ли) и др. Применяют проходные и непроходные калибры или двусторонние, одна сторона которых является про­ходным калибром, другая — непроходным.

Номинальными размерами проходных и непроходных калибров являются предельные размеры проверяемой поверхности детали. Например, для проходного калибра гладкой пробки номинальным размером устанавливается наименьший предельный размер отверстия, а непроход­ного — наибольший предельный размер отверстия.

Для измерения размеров существует ряд методов и измерительных средств (инструментов, приборов и др.). Все методы измерения разделяются на абсолютные и относительные (сравнительные), прямые и косвенные, комплексные и дифференцированные, контактные и бес­контактные. Кроме того, измерения, проводимые после изготовления детали, относятся к пассивным методам, а измерения, выполняемые непосредственно при изготовлении детали на обрабатывающем станке, когда станку дается команда по введению поправки на износ инстру­мента (например, абразивного), — к активным.

Основными средствами измерения являются: меры универсальные, измерительные средства и специальные измерительные средства.

Меры длины выпускаются в виде плоскопарал­лельных концевых мер (прямоугольных параллелепипе­дов и цилиндров) по четырем классам точности. Их по­грешности очень малы. Например, срединное отклонение длины концевой меры номинального размера, равного 100 мм, составляет 0,0005 мм для 1-го класса и 0,0003 мм для 0-го класса. Для измерения углов применяют угловые меры (плитки), изготовляемые по двум клас­сам — 1 и 2.

Абсолютные измерения можно выполнять следующи­ми инструментами: штангенциркулем, штангенглубиномером, микрометром, угломером и др., которые относят­ся к универсальным измерительным средствам. Все эти инструменты имеют штриховые шкалы (линейки или лимбы). Повышение точности отсчета, связанное с оцен­кой доли деления шкалы, осуществляется с помощью специальных устройств — нониусов. Специальные изме­рительные средства изготовляют для определенных, кон­кретных контрольных' операций.

К приборам для абсолютного измерения относятся универсальные и инструментальные микроскопы, проек­торы. Для относительных (сравнительных) измерений ис­пользуются индикаторы часового типа, миниметры, ми­кромеры (МКМ), микрокаторы, оптиметры, контактные интерферометры, пневматические приборы и др.

В настоящее время получают широкое распростране­ние различные контрольные автоматы (электрические ав­томаты для рассортировки деталей по размерам, автома­тические устройства, определяющие годность детали одновременно по всем контролируемым размерам, и т. д.). В основу проектируемых автоматов и автоматиче­ских устройств для контроля размеров и формы деталей закладываются различные конструкции электрокон­тактных датчиков.

На современном этапе развития науки и производства непрерывно расширяется область применения неразрушающих методов контроля, совершенствуются средства неразрушающего контроля. К таким методам относятся: оптические (оптическая голография, электронная микроскопия), электромагнитные и электрические (для контро­ля блоков и электроцепей на функционирование, сопро­тивления цепей и прочности изоляции, дня других целей), рентгеновские (рентгенография, рентгенотелевизионные методы), тепловые (посредством ИК-камер), ультразву­ковые, капиллярные (люминесцентные) и др.

Шероховатость поверхности

Основоположником учения о качестве поверхности был русский ученый проф. В. Л. Чебышев.

При различных процессах механической обработки на обрабатываемых поверхностях образуются неровно­сти - шероховатость, представляющая собой чередую­щиеся выступы (гребенки) и впадины. Кроме того, по­верхность обработки приобретает волнистость и особые измененные физико-механические свойства.

Шероховатость поверхности в значительной степени определяет качество и срок службы деталей машин, агре­гатов, приборов. В частности, износ трущихся поверхно­стей зависит от их шероховатости. Большая шерохова­тость поверхностей сопрягаемых деталей ведет при работе к быстрому изменению посадок. Поэтому для длительного сохранения посадок необходимо вводить процессы чистовой обработки, уменьшающие шерохова­тость.

Однако весьма малая шероховатость может вызвать выдавливание смазывающего вещества, а вследствие это­го появление полусухого или сухого трения, характери­зующегося интенсивным износом. Коэффициент трения также зависит от шероховатости поверхности. Шерохова­тость поверхности оказывает влияние на антикоррозион­ную стойкость. При большой шероховатости корроди­рующие вещества, сосредотачиваясь на дне впадин неровностей поверхности, вызывают интенсивный про­цесс коррозии.

Разрушение деталей при знакопеременной нагрузке начинается с появления микроскопических трещин, ко­торые, увеличиваясь, приводят к их поломке. Поверх­ностные неровности можно рассматривать как первона­чальные трещины, в которых концентрируется напряже­ние усталости. По данным проф. С. В. Серенсена, поверхности с малой шероховатостью имеют повы­шенный предел усталости материала.

К настоящему времени еще не установлен общий кри­терий оценки качества поверхности, охватывающий как

геометрическое ее очертание, так и физико-механические свойства поверхностного слоя материала. Действующий в СССР ГОСТ 2789 - 73 (соответствующий рекомендации СЭВ по стандартизации РС6 — 71) оценивает качество обработанной поверхности лишь по ее шероховатости, т. е. по микрогеометрии.

Параметрами шероховатости (одним или нескольки­ми) являются:

Ra — среднее арифметическое отклонение профиля (микрогеометрии);

Rz — высота неровностей профиля по 10 точкам;

Rmax — наибольшая высота неровностей профиля;

Sm — средний шаг неровностей;

S — средний шаг неровностей по вершинам. Стандартом установлены возможные направления не­ровностей: параллельное, перпендикулярное, перекрещи­вающееся, произвольное, кругообразное и радиальное. Неровности, характеризующие шероховатость, и количе­ственная оценка параметров шероховатости ограничи­ваются базовой длиной l, величина которой увеличивает­ся с повышением шероховатости.

Обозначение шероховатости на чертежах выполняется по ГОСТ 2.309 — 73. Структура обозначения шероховато­сти показана на рис. 17.3.

Методы оценки шероховатости (микрогеометрии) по­верхности можно отнести к двум группам: 1) методы сравнительной оценки, при которых не выявляется абсо­лютная величина неровностей поверхности, а лишь дает­ся оценка общего ее состояния в сравнении с эталоном шероховатости (или образцовой деталью); при этом ис­пользуют лупу или сравнительный микроскоп; 2) про­фильные методы, с применением которых определяется истинная высота микронеровностей в абсолютных единицах. К ним относятся измерения на профилографах и профилометрах разных конструкций, двойном микро­скопе Линника и других приборах.

Выбор заготовок

Для получения деталей применяют различные заго­товки: металлические, пластмассовые, керамические и др. Металлические заготовки изготовляют литьем, горячей и холодной штамповкой, сваркой и другими методами. Вид заготовки, ее конфигурации и размеры зависят от типа производства, формы детали и требований, предъ­являемых к ней в отношении точности и шероховатости поверхностей.

Например, литьем в песчаные формы получают заго­товки в мелкосерийном и единичном производствах, од­нако заготовки крупных деталей — станин, корпусов, рам (главным образом из чугуна) отливают в серийном, а иногда и в массовом производстве. Наряду со многими недостатками литье в песчаные формы имеет достоин­ство — небольшие первоначальные затраты на оснастку.

Литье в кокиль наиболее целесообразно применять в серийном и массовом производствах для отливок сред­ней сложности из цветных сплавов и чугуна с размерами по 12-му квалитету точности.

По сравнению с литьем в песчаные формы, литье в кокиль обеспечивает большую производительность труда, более высокую точность и меньшую шерохова­тость, лучшую структуру металла, повышающую меха­нические свойства на 10 — 20%. Факторами, ограничи­вающими применение литья в кокиль, являются высокая стоимость кокиля и трудность получения отливок слож­ной конфигурации.

Литье под давлением применяют для получения не­больших, в основном тонкостенных заготовок сложной конфигурации, требующих при других способах отливки длительной механической обработки. Оно является на­иболее производительным способом литья, обеспечивает достаточно высокую точность, повышенные свойства ме­талла, возможность сопряжения нескольких деталей и ар­мирования. Однако пресс-формы для литья под давле­нием имеют высокую стоимость, а в отливках имеется воздушно-газовая пористость.

Высокая стоимость форм позволяет применять такое литье лишь в крупносерийном и массовом производствах, но, изготовляя формы из нормализованных частей, его можно применять в серийном производстве даже при небольших партиях. Вакуумирование металла уменьшает пористость отливок.

Литьем по выплавляемым моделям получают точные (прецизионные) заготовки сложной формы, которые нель­зя отлить другими способами, в частности из трудно­обрабатываемых сплавов. Заготовки, полученные таким способом, как правило, не проходят механическую обра­ботку. Применение этого метода рграничивается значи­тельной стоимостью пресс-форм для восковых моделей и формовочного материала.

Горячей обработкой давлением получают заготовки с повышенными механическими свойствами, малыми припусками на обработку. Горячей штамповкой чаще по­лучают заготовки деталей с толстыми стенками из же­лезных, медных, алюминиевых и магниевых сплавов. Стоимость штампов достаточно высокая, хотя по сравне­нию со стоимостью пресс-форм для литья под давлением она в 1,5 — 2 раза ниже, а срок их службы в 2 — 3 раза больше. Горячую штамповку применяют в серийном и массовом производствах.

Холодной штамповкой получают плоские или объемные заготовки из листового материала.

Сваркой получают обычно заготовки каркасных дета­лей, к которым не предъявляются жесткие требования по деформации.

Для получения заготовок из листового материала в серийном и массовом производствах широко приме­няется холодная штамповка. При наличии универсальных штампов для поэлементной штамповки она может ис­пользоваться и в мелкосерийном производстве.

Размеры заготовок складываются из размеров дета­лей, для которых они предназначены, и всех межопера­ционных припусков и допусков. Существует методика расчета размеров заготовок.

Дальнейшее совершенствование заготовительного производства связано с получением наиболее точных за­готовок и внедрением в производство прогрессивных ме­тодов формообразования, обеспечивающих повышение производительности труда, снижение себестоимости из­делий, повышение коэффициента использования материа­лов. Количество точных заготовок будет увеличиваться за счет новых методов обработки металлов давлением, • расширения использования прогрессивных методов литья, порошковой металлургии, новых сортаментов ме­таллов и сплавов с повышенными техническими и техни­ко-экономическими характеристиками, применения эко­номичных профилей проката.

В частности, прокатка и волочение обеспечивают бо­лее высокие механические свойства металла заготовок, меньшие отходы материала. Производительность про­катки превышает производительность штамповки в 4 —8 раз. Как указано в Основных направлениях экономиче­ского и социального развития СССР на 1981-1985 годы и на период до 1990 года, выпуск металлических порош­ков для порошковой металлургии уже в одиннадцатой пятилетке должен повыситься в 3 раза.

В заготовительном производстве будут расширяться методы дистанционного управления технологическими процессами и оборудованием, а также централизованное управление ими с единого диспетчерского пульта. Широ­кое применение найдут автоматизированные системы управления комплексами технологических процессов (АСУТП).

Последнее изменение этой страницы: 2016-06-09

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...