Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Определение ускорений графоаналитическим методом.

Рассуждая аналогично теореме подобия для определения скоростей отдельных точек звеньев, очевидно, что план ускорений жёсткого звена подобен самому звену, и повёрнут на девяносто градусов.

Полное ускорение можно найти геометрически просуммировав нормальное и тангенциальное ускорения, то есть: (рис.3.4).

Рис.3.4

Модуль вектора нормального ускорения точки можно найти по формуле: . Линия действия этого вектора будет перпендикулярна звену .

Модуль вектора тангенциального ускорения точки можно найти по формуле: . Линия действия этого вектора будет параллельна звену .

План ускорений механизма, как и план скоростей, не подобен самому механизму, и является совокупностью планов ускорений отдельных звеньев, построенных из одного полюса плана ускорений .

 

Пример 3.

Заданы геометрические параметры всех звеньев и угловая скорость , которая является постоянной величиной.

Требуется определить ускорение точки .

Рис.3.5

 

Решение:

Построение плана скоростей.

Скорости точек и равны нулю, поэтому на плане скоростей точки и совпадают с полюсом плана скоростей (рис.3.6).

Рис.3.6

 

Модуль скорости точки : . Линия действия вектора скорости точки : перпендикулярно звену .

Зададимся неким масштабным коэффициентом , и построим вектор на плане скоростей.

Скорость точки определяется из решения векторного уравнения , где - скорость точки ; - скорость точки , - скорость звена в его относительном вращении около точки . Вектор известен. Линия действия вектора : перпендикулярно звену . Линия действия вектора : параллельно направляющей .

Скорость точки определяется с помощью теоремы подобия и правила чтения букв. Правило чтения букв заключается в том, что порядок написания букв на плане скоростей или ускорений жёсткого звена должен в точности соответствовать порядку написания букв на самом звене. Из пропорции , можно определить длину отрезка и, построив его на плане скоростей, получить точку . Соединив полюс плана скоростей с точкой получим вектор скорости точки - .

Скорость точки определяется с помощью решения системы геометрических уравнений: , или .

Скорости точек и определяются с помощью теоремы подобия и правила чтения букв: , следовательно, ; , следовательно, , при этом .

Выводы:

1. Как видно из построений, план скоростей механизма не подобен самому механизму.

2. План скоростей даёт возможность найти скорость любой точки любого звена по величине и направлению.

Построение плана ускорений.

Ускорения точек и равны нулю, поэтому соответствующие им точки и на плане ускорений совпадают с полюсом плана ускорений (рис.3.7).

Рис.3.7

 

Ускорение точки можно найти с помощью решения векторного уравнения , где - ускорение точки , которое равно нулю; - ускорение звена в его относительном движении около точки . Ускорение звена можно представить в виде векторной суммы его нормального и тангенциального ускорений, то есть: . Тангенциальное ускорение звена равно нулю, поскольку его угловая скорость не меняется, поэтому ускорение точки равно нормальному ускорению звена , то есть Модуль нормального ускорения звена : . Линия действия вектора : параллельно звену . Направление вектора : к точке . Задавшись масштабным коэффициентом , строится вектор .

Скорость точки находится с помощью геометрического решения векторного уравнения: , где - ускорение точки ; - ускорение точки ; - нормальное ускорение звена ; - тангенциальное ускорение звена . Направление ускорения точки : параллельно направляющей . Ускорение точки известно. Модуль нормального ускорения звена : ; линия действия вектора : параллельно звену ; направление вектора : к точке . Линия действия вектора тангенциального ускорения звена : перпендикулярно звену .

Ускорение точки находится с помощью теоремы подобия и правила чтения букв: , следовательно, .

Ускорение точки можно найти с помощью решения системы векторных уравнений: или .

Ускорения точек и определяются с помощью теоремы подобия и правила чтения букв: , следовательно, ; , следовательно, .

Планы скоростей и ускорений шарнирного четырёхзвенника. Понятие о теореме подобия для определения скоростей и ускорений.

При решении задач такого типа известны угловая скорость ведущего звена 1 – кривошипа, длины звеньев и координаты неподвижных точек.

Последовательность решения задачи:

1. Строится план механизма (рис. 3.8) в выбранном масштабе длин:

, м/мм,

где LOA – длина кривошипа, м; AO – длина отрезка, изображающего кривошип на плане механизма, мм.

Для построения плана механизма остальные длины звеньев и координаты неподвижных точек шарнирного четырехзвенника (рис. 3.8) переводятся масштабом длин в отрезки:

, мм,

, мм,

, мм.

2. Составляются векторные уравнения линейных скоростей отдельных точек, принадлежащих звеньям механизма.

Векторное уравнение для звена 2 (шатуна)

(1)

где – скорость точки А, которая равна скорости точки А относительно оси вращения кривошипа точки О; – вектор относительной скорости точки В шатуна относительно А имеет направление, перпендикулярное отрезку АВ на плане механизма.

Векторное уравнение для звена 3 (коромысла)

(2)

Так как точка С (ось вращения коромысла 3) неподвижна, то её скорость равна нулю ( ), а вектор относительной скорости точки В относительно С ( ) имеет направление, перпендикулярное отрезку ВСна плане механизма.

3. Строится план скоростей механизма – это не что иное, как графическое изображение на чертеже векторных уравнений (1) и (2) в каком-либо масштабе.

 

План скоростей механизма и его свойства

План скоростей желательно строить рядом с планом механизма (рис. 3.8). Предварительно рассчитывается скорость точки А кривошипа:

, м/с.

Затем выбирается масштаб плана скоростей по соотношению

, ,

где – скорость точки А, м/с; PVa – длина отрезка, изображающего на будущем плане скоростей скорость , выбирается произвольной длины в мм; при выборе желательно придерживаться условий: во-первых, план скоростей должен размещаться на отведённом месте чертежа, во-вторых, численное значение масштаба должно быть удобным для расчётов ( должно быть круглым числом).

После этого можно приступать к построению плана скоростей механизма. Его следует проводить в последовательности, соответствующей написанию векторных уравнений (1) и (2).

Сначала проводится из произвольно выбранной рядом с планом механизма точки (полюса плана скоростей) вектор скорости , который перпендикулярен отрезку ОА на плане механизма и имеет длину PVa, выбранную нами при определении масштаба плана скоростей . Затем через точку a проводится линия, перпендикулярная отрезку АВ плана механизма, а через полюс PV – линия, перпендикулярная отрезку ВС.Пересечение этих линий даёт точку b. В соответствии с векторными уравнениями (1) и (2) на построенном плане наносятся направления (стрелки) векторов и.

Определим скорость точки К, принадлежащей шатуну. Для неё можно записать векторные уравнения скоростей:

где вектор скорости перпендикулярен отрезку АК на плане механизма, а вектор – отрезку КВ.

Построением этих векторных уравнений получаем точку k на плане скоростей. При этом из точки a плана скоростей проводим линию, перпендикулярную отрезку АК, а через точку b плана скоростей – линию, перпендикулярную отрезку ВК плана механизма. Величину скорости точки К можно вычислить по формуле

,

где – длина соответствующего вектора на плане скоростей.

Можно заметить, что треугольники на плане скоростей и плане механизма подобны:

,

так как стороны их взаимно перпендикулярны. Это свойство можно использовать для определения скорости любой другой точки, принадлежащей какому-либо звену механизма. Отсюда следует теорема подобия:отрезки относительных скоростей на плане скоростей образуют фигуру, подобную фигуре соответствующего звена на плане механизма. Стороны фигур взаимно перпендикулярны.

Угловые скоростишатуна 2 и коромысла 3 рассчитываются по формулам

, c-1,

, c-1.

Направления угловых скоростей определяются по направлениям векторов и. Для этого вектор условно переносится в точку В плана механизма. Куда он будет вращать шатун 2 относительно точки А, в ту сторону и будет направлена угловая скорость шатуна .

Аналогично поступают со скоростью . В каком направлении будет вращаться коромысло относительно точки С, туда и будет направлена угловая скорость .

 

План ускорений механизма и его свойства

Последовательность построения плана ускорений рычажного механизма аналогична построению плана скоростей. Рассмотрим её на примере механизма шарнирного четырехзвенника (рис. 3.8). Примем угловую скорость кривошипа постоянной ( , что является наиболее распространённым и рациональным видом движения в реальных механизмах).

Векторное уравнение ускорений для звена 1 (кривошипа)

где нормальная составляющая ускорения точки A относительно O рассчитывается по формуле .

Вектор параллелен отрезку АО на плане механизма. Тангенциальная составляющая ускорения рассчитывается по формуле

.

В нашем случае угловое ускорение кривошипа , тогда .

Векторное уравнение ускорений для звена 2 (шатуна)

где нормальная составляющая ускорения точки В относительно точки А рассчитывается по формуле .

Вектор параллелен отрезку АВ и направлен от В к А, а тангенциальная составляющая перпендикулярна АВ.

Векторное уравнение ускорений для звена 3 (коромысла)

где ускорение точки С ; нормальная составляющая ускорения точки В относительно точки С рассчитывается по формуле .

Вектор направлен параллельно отрезку ВС плана механизма от В к С, а вектор – перпендикулярно ВС.

Выбираем масштаб плана ускорений: , , где pаа – длина отрезка, изображающего ускорение на плане ускорений. Его длина выбирается произвольно из расчета, чтобы план ускоренийразместился на отведенном месте чертежа и численное значение было удобным для расчетов ( должно быть круглым числом).

Тогда ускорение будет изображаться на плане ускорений вектором, имеющим длину , мм, а ускорение – вектором длиной , мм.

Затем строится план ускорений (рис. 3.8) с использованием составленных векторных уравнений ускорений. Из произвольно выбранного полюса Ра параллельно отрезку ОА плана механизма проводится вектор ускорения , длина которого Раа′ была выбрана произвольно при расчете масштаба . Из конца этого вектора (точки а′) проводится вектор ускорения длиной а′n2, который должен быть параллелен отрезку АВплана механизма и направлен от точки В к точке А. Перпендикулярно ему через точку n2 проводят прямую. Затем из полюса Ра проводят вектор ускорения длиной Раn3. Перпендикулярно ему через точку n3 проводят прямую до пересечения с прямой, проведенной через точку n2 перпендикулярно отрезку АВ. Точка пересечения обозначается буквой b′, которая, будучи соединена с полюсом Ра, образует отрезок Раb′, изображающий вектор полного ускорения точки В.

Используя план ускорений, можно вычислить ускорения

, .

Запишем

,

где и – угловые скорость и ускорение шатуна.

где и не зависят от выбора (расположения) полюса Ра плана ускорений, а отношение масштабов постоянно ( ) для данного плана ускорений. Поэтому для любой точки (например, К, принадлежащей шатуну) можно записать пропорции

.

Отсюда формулируется теорема подобия: отрезки полных относительных ускорений на плане ускорений образуют фигуру, подобную соответствующей фигуре звена на плане механизма.

Величину ускорения точки К можно вычислить по формуле

.

Угловые ускорения звеньев шатуна , c-1, направление определяются по ; угловые ускорения звеньев коромысла , c-1, направление – по .

Так как и направлены в противоположные стороны, вращение шатуна является замедленным.

 

Использование плана скоростей и плана ускорений для определения радиуса кривизны траектории

Движения точки

Радиус кривизны траектории движения точки (например, точки К) можно вычислить по формуле

,

где – нормальная составляющая ускорения точки К.

Для определения величины (и направления) следует вектор полного ускорения на плане ускорений разложить на нормальную и тангенциальную составляющие, причём перпендикулярна вектору скорости , параллельна последнему. Для этого сначала через полюс плана ускорений Ра проводится прямая, параллельная вектору скорости точки К, а через точку k` – перпендикуляр к этой прямой; на их пересечении получают точку m.

Рис. 3.8. План механизма, скоростей, ускорений

Использование плана скоростей и плана ускорений для определения мгновенного центра скоростей (МЦС)

Последнее изменение этой страницы: 2016-06-09

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...