Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Основные характеристики видеокамер

Разрешение (ТВЛ) ― параметр, характеризующий детальность изображения, одним словом, чем больше разрешение, чем лучше просматриваются мелкие детали, такие как номер автомобиля, лицо человека. Измеряется в телевизионных линиях (ТВЛ), причем подразумевается разрешающая способность по горизонтали, так как разрешение по вертикали у видеокамер одного стандарта одинаково и ограничено на одном уровне. Черно-белые видеокамеры стандартного разрешения имеют разрешение 380-420 ТВЛ, повышенного разрешения 560-570 ТВЛ, цветные видеокамеры 280-350 ТВЛ, высокого разрешения до 460 ТВЛ, а с цифровой обработкой видеосигнала (DSP) до 560 ТВЛ [1].

Чувствительность (люкс) ― минимальный уровень освещенности (в люксах), при котором видеокамера дает распознаваемый видеосигнал. Чем параметр меньше, тем меньше света необходимо камере для то го чтобы выдать картинку. Для обычных черно-белых видеокамер она составляет 0,4~0,01 люкс для высокочувствительных до 0,00015 люкс, для цветных 0,2~3 люкс.

 

 

Таблица 1.1 - Ориентировочная освещенность объектов

На улице: безоблачный, солнечный день Более 100 000 люкс (угол солнца 55°)
Солнечный день, с легкими облаками 70 000 люкс
Пасмурный день 20 000 люкс
Раннее утро 500 люкс
Сумерки 4 люкс
Ясная ночь, полная луна 0.2 люкс
Ясная ночь, неполная луна 0.02 люкс
Ночь, луна в облаках 0.007 люкс
Ясная, безлунная ночь 0.001 люкс
Безлунная ночь с легкими облаками 0.0007 люкс
Темная, облачная ночь 0.00005 люкс
В помещении без окон 100 - 200 люкс
Хорошо освещенные 200 - 1000 люкс

 

Примечание: составлено автором

 

Чувствительность черно-белых видеокамер затрагивает не только спектр видимого света, но инфракрасную область, что позволяет применять ИК-подсветки в условиях низкой освещенности.

Размер матрицы - основным элементом камеры видеонаблюдения является матрица ―совокупность ячеек, способных передавать информацию о цвете. Размер матрицы меряется по диагонали в дюймах. При выборе камеры следует учитывать, что чем больше размер матрицы, тем больше размеры камеры, но размер матрицы не влияет на качество изображения. Наиболее распространены видеокамеры с размером матрицы 1/2", 1/3", 1/4"[2].

 

 

Рисунок 1.5 – Структурная схема матриц ПЗС и КМОП

Примечание: составлено автором

 

Формат матрицы ― этот параметр определяет возможности камеры по воспроизведению мелких деталей изображения: чем выше разрешение, тем больше детальность, информативность картинки. Разрешение измеряется в телевизионных линиях (ТВЛ) и зависит не только от числа пикселей в матрице, но и от параметров электронной схемы камеры. В большинстве случаев разрешение 380-400 ТВЛ вполне достаточно для наблюдения(рис.1.5).

Разрешение цветных камер несколько хуже, чем разрешение черно-белых: 300 - 350 ТВЛ. Существуют цветные камеры более высокого разрешения — 460 ТВЛ.

Для передачи сигнала 390 ТВЛ необходима полоса частот 3,75МГц, но полоса пропускания усилителей камеры обычно значительно (в 1,5-2 раза) превосходит необходимую. Так что разрешение ограничивается именно дискретностью структуры ПЗС – матрицы. Разрешение системы в целом определяется тем компонентом, который имеет самое низкое разрешение, т. е., если камера имеет разрешение 430 линий, а монитор — 200, то изображение на экране будет воспроизведено с разрешением лишь в 200 линий. Разрешение может меняться при различных условиях освещенности, при низкой освещенности оно обычно снижается.

Угол обзора камеры ― параметр, который определяется фокусным расстоянием (f) объектива и его форматом. Широкому углу обзора, соответствуют маленькие фокусные расстояния (2,8-5,0 mm). Для наблюдения за удаленными объектами применяют объективы с большим фокусным расстоянием (28,0 – 75,0 mm и более). При выборе объектива надо помнить, что формат объектива должен быть равен формату камеры или превосходить его.

 

Таблица 1.2 - Углы обзора видеокамеры

Фокусное расстояние, мм. Угол обзора по горизонтали, град. Угол обзора по вертикали, град.
2,45
2,96
3,6

 

Примечание: составлено автором

 

 

Имея объектив с широким углом обзора, то можно получить хороший панорамный обзор, но вдаль изображение будет иметь хуже обзор. А при использовании длиннофокусных объективов конечно сужается поле зрения, но вы будете лучше видеть вдаль.

Автодиафрагма ― в течение суток освещенность на контролируемом объекте, претерпевает существенные изменения. Для поддержания на постоянном уровне количества света на матрице используют встроенный в камеру автоматический электронный затвор или объектив с автодиафрагмой.

Черно-белые камеры имеют более высокую чувствительность, разрешающую способность, позволяют наблюдать объект в инфракрасном (невидимом для глаза) излучении, имеют более низкую стоимость. Основным недостатком черно-белой камеры является то, что невозможно определить цвет объекта. К примеру, голубой и желтый автомобиль на экране монитора будет выглядеть, как серый.

Цветные камеры позволяют более точно определить объект наблюдения. Недостатком является более высокая стоимость, невозможность получить качественное изображение в темное время суток.

В некоторых цветных камерах существует режим день/ночь, т.е. камера при низкой освещенности начинает работать в черно-белом режиме.

Если камера должна устанавливаться на улице. А улица в казахстанских условиях это большие колебания температуры от -40 до +50 °С, высокая влажность, большие колебания освещенности. Не стоит "забывать" и возможность физического уничтожения камеры.

Для компенсации жестких климатических условий на улице, находящихся за границей работоспособности видеокамеры, применяются специальные климатические кожухи (термокожух).

Для защиты видеокамеры от вандализма применяются специальные кожухи, изготовленные из высокопрочных сплавов, с бронированным стеклом.

Детектор движения – это программный модуль, основной задачей которого является обнаружение перемещающихся в поле зрения камеры объектов. Детектор движения не только обнаруживает перемещение в поле изображения, но и определяет габариты объекта и скорость его движения. В зависимости от задач видеонаблюдения, детектор движения настраивают с предельной минимизацией ложных срабатываний (фильтрацией помех), задают гибкую логику обработки тревог (тревожная запись, интеграция с другим охранным оборудованием) [1].

При поступлении сигнала тревоги с одного из датчиков в памяти web-камеры формируется последовательность видеокадров, поступивших до, после и в момент тревоги и отправляются по заранее определенному адресу FTP или SMTP.

Скрытая или обычная установка. Для скрытого видеонаблюдения используются миниатюрные бескорпусные камеры с диаметром объектива 1-2 мм (так называемые камеры pinhole), которые могут устанавливаться в стенах, входных дверях. В случае, когда нет необходимости скрывать факт видеонаблюдения применяются обычные корпусные или бескорпусные камеры.

По способу передачи видеосигнала камеры наблюдения делятся на две группы: аналоговые и сетевые. Аналоговые камеры передают видеосигнал по коаксиальному кабелю и подключаются к системе наблюдения через BNC-разъем. Некоторые из них оснащены встроенным передатчиком видео по витой паре или оптоволокну – это позволяет передавать видеосигнал на большие расстояния без промежуточных усилителей(рис.1.6).

 

 

Рисунок 1.6 – Иллюстрация переходной характеристики

для аналоговой камеры

Примечание: составлено автором

 

IP-камеры не только формируют видеосигнал, но также оцифровывают его, сжимают (в MPEG-4, M-JPEG и т.д.) и передают по LAN/WAN через сетевой порт Ethernet. Поскольку IP-камеры наблюдения, как правило, имеют встроенный веб-сервер, изображение с них можно просматривать в окне стандартного веб-браузера (Internet Explorer).

 

 

Рисунок 1.7 – Иллюстрация переходной характеристики для цифровой камеры

Примечание: составлено автором

 

 

Среды передачи данных

 

После считывания заряда с ПЗС матрицы и преобразования его в электрический сигнал, он должен пройти путь от видеокамеры до видеосервера. Путь этот может быть не близким, так как камеры могут располагаться за несколько километров от места концентрации видеоизображения. Также надо учитывать и электромагнитные помехи, которые также оказывают действие на видеосигнал, поэтому следует внимательно подойти к выбору среды передачи данных от видеокамеры к видеосерверу.

Каждый тип имеет свои ограничения по применению, что необходимо учитывать при проектировании схемы размещения компонентов системы. Максимально возможные расстояния между видеосервером и видеокамерами в зависимости от способа передачи видеосигнала представлены в таблице 3.

 

Таблица 1.3 - Среды передачи видеосигнала

Тип соединения Длина линий связи без усилителя Дополнительное оборудование Примечание
Витая пара до 1800 м Передатчики и приемники сигнала по витой паре. -Отсутствие токовых петель. -Высокая защищенность от помех. -Стоимость кабеля и монтажа ниже, чем при использовании коаксиального кабеля.
Коаксиальный кабель до 300 м Не используется -Возможность возникновения токовых петель. -Чувствительность к различным наводкам. -Малая длина линий связи
Оптоволокно многомодовое, одномодовое до 4 км многомодовое до 40 км одномодовое Передатчики и приемники сигнала по оптоволокну. -Отсутствие токовых петель. -Максимальная защищенность от наводок.
Wi-Fi   Wi-Max до 100 метров   6-10 км Передатчики и приемники сигнала. -Отсутствие токовых петель. -Низкая защищенность от помех.

 

Примечание: составлено автором

 

Коаксиальный кабель - наиболее распространенный способ передачи изображения в реальных СОТ.

Основными характеристиками кабеля являются его волновое сопротивление, диаметр и погонное затухание.

Как правило, входные и выходные сопротивления основных компонентов СОТ имеют значение 75 Ом, т.е. рассчитаны на применение кабелей с волновым сопротивлением 75 Ом. Поэтому применять для передачи видеосигнала кабели с волновым сопротивлением, отличным от 75 Ом, не рекомендуется.

Максимальное расстояние передачи видеосигнала по коаксиальному кабелю зависит от целевой задачи видеоконтроля и определяется исходя из допустимого затухания видеосигнала в кабеле (для идентификации - 3 дБ, для обнаружения - 6 дБ).

Затухание в коаксиальном кабеле зависит, в основном, от его диаметра и составляет 2,6 дБ на 100 м (для кабеля диаметром 6 мм) и 1,4 дБ на 100 м (для кабеля диаметром 9 мм).

Исходя из приведенных выше цифр, можно рассчитать максимальное расстояние передачи видеосигнала по коаксиальному кабелю.

При необходимости передачи сигнала на большие расстояния применяют видеоусилители.

Особенности выбора и монтажа коаксиального кабеля, применяемого в СОТ следующие:

― выбирать коаксиальный кабель с двойной экранировкой, обеспечивающий степень подавления помех не менее 60 дБ;

― применять методы, которые уменьшают влияние помех, возникающих на объекте (предотвращение или уменьшение искрообразования, использование в аппаратуре специальных фильтров для уменьшения паразитного высокочастотного излучения, устранение помех электрической сети (50 Гц), экранирование аппаратуры и др.);

Для передачи сигнала на большие расстояния (до 1,5 км) возможно применение линии передачи "витая пара" с соответствующим оборудованием (передатчиком и приемником) для преобразования видеосигнала в симметричный, поскольку на выходе камеры сигнал несимметричен.

В специальных СОТ, когда требуются повышенная помехозащищенность, конфиденциальность информации и высокая разрешающая способность, применяют волоконно-оптические линии связи. Дальность действия таких СОТ (как и при передаче по телефонным линиям) практически не ограничена. Относительная дороговизна данных систем обусловлена тем, что ТК не имеют выхода для подключения оптоволоконного кабеля, поэтому требуется вводить в СОТ преобразователи электрического сигнала в оптический и обратно. Кроме того, прокладка, сращивание и подключение оптоволокна достаточно сложны. Однако при увеличении дальности передачи видеосигнала стоимость СОТ с волоконно-оптическим кабелем меньше стоимости системы передачи с помощью коаксиального кабеля (из-за большого количества усилителей, корректоров и другого оборудования и материалов). Например, видеосигнал от десяти ТК можно передавать по одному оптоволокну, а в случае использования коаксиального кабеля приходится использовать 10 отрезков такого кабеля необходимой длины и такое же количество усилителей, корректоров и др. [4]

При создании мобильных и переносных систем, а также при невозможности или нецелесообразности прокладки кабельных линий используют радиоканалы связи. Дальность передачи при этом составляет от сотен метров до нескольких километров. В простейшем случае ТК подключают к радиопередатчику гигагерцового диапазона. Однако такие системы имеют существенные недостатки: могут создавать помехи бытовому теле и радиовещанию, а сигнал в зоне действия передатчика может принимать преступник.

Большинство беспроводных систем передачи видеосигнала имеет достаточно узкие диаграммы направленности. Поэтому такие системы критичны к выравниванию и установке передающих и приемных антенн. При проектировании указанных систем и их монтаже упор должен быть сделан на методы выравнивания и жесткости крепления антенн. Естественные движения высоких сооружений, на которых закреплены антенны, могут серьезно воздействовать на эффективность системы передачи.

 

Этапы обработки сигнала

Вследствие того что аналоговый сигнал практически не поддается обработки для его хранения необходимо большое количество магнитных носителей, а передавать его на большие расстояния без усилителей невозможна, возникла необходимость в оцифровки видеосигнала перед его обработкой(рис.1.8).

 

Рисунок 1.8 - Частотная характеристика телевизионного сигнала

Примечание: составлено автором

 

Оцифрованный сигнал сжимается до 1000 крат, передается с помощью компьютерных сетей на любое расстояние, анализируется сложными программными и аппаратными модулями с целью выявления движения в кадре, возможность цифрового увеличения требуемого изображения, хранить оцифрованную информацию становится гораздо проще чем аналоговую (Время записи при отключенном детекторе движения, запись ВИ только на внутренний носитель 40GB, 32 ВК, 1к/с для каждой ВК, ч/б изображение, 768х288 15 – 18,75 часов).

Для оцифровки видеосигнала применяют устройства - фреймграбберы. В граббере могут быть использованы различные технологии, поскольку создано большое количество схем, которыми она может комплектоваться. Контроллеры оцифровки бывают двух типов: предназначенные для промышленных и научных приложений или для работы в области мультимедиа. Грабберы, использующиеся в научных целях для контроля процесса производства, конвертируют видеосигнал с наиболее возможной точностью, внося минимальные искажения. Мультимедийные контроллеры сначала конвертируют сигнал, а затем в эстетических целях изменяют его так, чтобы картинка была более привлекательной. Из-за совершенно различных областей применения контроллеры двух разных типов не могут быть взаимозаменяемыми, хотя некоторые производители мультимедийных плат подают их как “универсальное” решение для всех видов приложений [2].

Мультимедийный контроллер компонуется таким набором микросхем, которые значительно изменяют видеоинформацию, тем самым внося большое количество артефактов и шума. Эти изменения, которые не присутствуют в изначальном сигнале, могут привести к ошибкам измерения на последующих стадиях обработки и анализа информации. При использовании таких контроллеров в приложениях, которые требуют высокой точности (технологические измерения, микроскопия, инспектирование целостности поверхностей), внесенные изменения могут привести к ложным результатам(рис.1.9).

 

 

Рисунок 1.9 – Схема фреймграббера

Примечание: составлено автором

 

Контроллеры оцифровки (грабберы) видеоизображения позволяют произвести захват и анализ сигнала, несущего визуальную информацию. Как правило, они представляют собой встраиваемые платы, подключающиеся к одной из компьютерных платформ. Платы видеозахвата преобразует исходное изображение источника видеосигнала в поток данных, которые могут храниться в цифровом виде, а также обрабатываться, анализироваться и отображаться на экране монитора. Видеосигнал может поступать от самых различных источников: видеокамеры, спецвидеомагнитофона, телевизионного тюнера, мультиплексора с подключенными к нему камерами и подобных этим устройств. Эти источники могут давать композитный (полный) видеосигнал, содержащий яркостную и цветоразностную (в случае цветного видео) составляющие, а также сигналы синхронизации или компонентный видеосигнал, когда различные составляющие сигнала передаются по отдельным линиям (как, например, в случае S-Video, когда яркостный и цветоразностный сигналы передаются раздельно). Кроме того, цветные видеосигналы могут иметь одну из тех принятых в мире стандартных систем кодирования цвета, - NTSC, PAL, SECAM, или их разновидности.

Оцифрованное изображение, полученное в результате видеозахвата, приобретает дополнительно следующие параметры:

- разрешение, которое определяет количество элементов изображения и выражается количеством точек (пикселей) по горизонтали и вертикали (256х256, 640х480, 768х576 и др.);

- отношение ширины пикселя к его высоте (обычно это 1:1, но бывают и другие, например, 4:3);

- глубина представления цвета; определяет количество цветов или оттенков одного цвета, измеряется в битах (8 бит – 256 цветов(оттенков серого для монохромного изображения). 10 бит – 1024, 16 бит – 65 536);

- частота кадров (FramesPerSecond – FPS), скорость с которой кадры сменяют друг друга за единицу времени, обычно за секунду 25 кадров в секунду хватает для того, чтобы изображение было плавным, без скачков.

Контроллеры оцифровки видеоизображения бывают различных типов, различаются по размерам и форме, но несмотря на разницу в дизайне и характеристиках, они, с небольшими исключениями имеют общие принципы функционирования.

“Передний край” платы – это блок на который приходит сигнал с подключенного устройства. Большинство контроллеров видеооцифровки имеют встроенный мультиплексор – электронный переключатель, который позволяет выбирать один из нескольких видеовходов. Таким образом, к некоторым платам можно подключить до четырех (наиболее эффективно) и более источников видеосигнала. Вдобавок, для выполнения определенных задач многие монохромные грабберы имеют так называемый “цветовой барьер” или фильтры цветности. Необходимость получения монохромного изображения от цветного источника обосновывается тем, что цветная составляющая сигнала может являться причиной интерференционных узоров, которые снижают качество картинки. Фильтры цветности удаляют цветовую составляющую для более качественного приема сигнала и более точного его анализа.

Блок синхронизации состоит из систем хронометража, синхронизации и управления приемом изображения. Вместе с блоком конверсии они составляют “сердце” контроллера оцифровки. Схема хронометража может работать как на фиксированной частоте (в случае контроллеров, которые принимают видеосигналы стандартных форматов), так и на частотах, задаваемых программно (в случае контроллеров, принимающих нестандартные видеосигналы, - сигналы малораспространенных кодировок). Работа схемы хронометража жестко связана с работой схемы синхронизации, которая согласует такты схемы хронометража и импульсы входящего видеосигнала.

Платы оцифровки могут иметь дополнительную схему синхронизации на случай видеосигналов, имеющих малое отношение сигнал/шум или не жестко зафиксированную, меняющуюся со временем, частоту. Эти схемы восстанавливают поврежденную/измененную частотность импульсов путем добавления пропущенных импульсов и игнорируя дополнительные. Такие схемы чрезвычайно полезны для получения чистого изображения от сильно “шумящих” источников сигнала, таких как видеомагнитофоны или камеры, передающих сигнал по очень длинному кабелю[2].

Схема управления приемом изображения позволяет внешним сигналам включать и подготавливать плату для захвата входящего сигнала. Подобные сигналы зачастую связаны с какими-либо процессами, такими, как движение объектов съемки по конвейеру, или другими промышленными ситуациями. Эта схема необходима там, где нужна только периодическая работа платы, а не постоянная.

Блок обработки изображения формирует данные после того, как картинка была оцифрована АЦ - конвертером. Таблицы перекодировки (Look-UpTables – LUTs) используются для обработки данных изображения и обычно бывают двух типов: входные (ILUTs) и цветовые (Palette-matching LUTs). Входные таблицы перекодировки используются для изменения цифровых данных изображения в реальном времени, а также для инверсии и изменения значений шкалы полутонов (шкалы оттенков серого цвета). После того, как изображение будет передано в компьютер, все эти операции можно осуществить, используя программное обеспечение, но с помощью аппаратных средств платы это будет сделано намного быстрее. Цветовые таблицы перекодировки, которые часто присутствуют в монохромных контроллерах оцифровки, используются для управления цветовой палитрой компьютера для того, чтобы запущенные программы не отображали монохромные изображения с цветовыми аберрациями.

Схема масштабирования и выделения позволяет уменьшить цифровое изображение (а в некоторых случаях – увеличить) как по оси Х так и по оси Y перед тем, как переслать его в компьютер. Выделение позволяет выбрать интересующий участок изображения и не учитывать все оставшиеся данные. Управление размером и выделение нужной части изображения уменьшает время обработки и передачи информации. Это необходимо для приложений, которые критичны ко времени, когда требуется обработать много объектов, например, изображение лиц людей на проходной, номеров машин на оживленной автотрассе [4].

Если блоки приема и конверсии сделаны с ошибками, то они вносят помехи, сильно искажающие видеоданные. Самыми важными являются не характеристики вносимого платой шума: суммарная нелинейность и среднеквадратическое отклонение, которые измеряются в единицах, называющихся LSB (Least Significant Bit - младший значимый разряд). LSB характеризует точность цифрового представления серых тонов. Суммарная нелинейность характеризует отклонение серого цвета, полученного контроллером, от серого цвета исходного изображения, а среднеквадратичное отклонение – помехи, вносимые схемами платы. Чем меньше величины обеих характеристик, тем выше качество работы контроллера. Если они не превышают 0,5 lsb, то это значит, что данный граббер является превосходным инструментом для оцифровки изображения.

У разных видов кодировок сигнала соотношение длины пикселя к его высоте может различаться. Так, в формате RS-170 стороны соотносятся, как 4:3. Отношение сторон пикселя тесно связано с процессом обработки изображения. У многих контроллеров оцифровки, работающих с частотой 60 Гц, это соотношение равно 5:4, тогда у большинства грабберов, работающих с частотой 50 Гц, оно равно 3:2. Остальные платы захвата видеоизображения позволяют задавать отношение сторон пикселя программным путем. В том случае, когда картинка принимается и отображается с одинаковым соотношением сторон пикселя, оно не играет большой роли, форма объектов не искажается, квадраты остаются квадратами, а окружности – окружностями. Соотношение сторон пикселя следует принять во внимание при выполнении некоторых специальных операций, таких как определение площади участка изображения путем подсчета элементов, его составляющих, или изгиб выбранной области картинки [6].

При записи изображения обычно используется по 8 бит (1 байт) для представления 256 уровней яркости красного, зеленого и синего цветов (RGB). Таким образом, для хранения одного элемента изображения (пиксела) требуется 3 байта памяти. Стандартный видеокадр формата 352Х288 пикселов требует 304128 байтов, а изображение на экране монитора даже при разрешении 640Х480 занимает почти целый мегабайт.

Использование классических алгоритмов сжатия "без потерь", таких как RLE (кодирование длин серий) или LZW (метод Зива - Лемпела - Уэлча), не решает проблемы, поскольку предельные для них коэффициенты сжатия (2-3 в случае черно-белых полутоновых или 1,5-2 для RGB изображений) совершенно недостаточны для большинства приложений. Коэффициент сжатия, достигаемый при использовании любого метода, зависит от характера изображения. Например одноцветный фон в любом случае сожмется лучше полного мелких деталей изображения.

Полноцветные 24-битовые изображения можно сжать путем синтеза изображения с искусственной палитрой и применения кодирования длин серий в сочетании со статистическим кодированием, но при этом максимальный коэффициент сжатия будет не более 3-5 относительно исходного изображения, причем основное сжатие произойдет за счет перехода от RGB к 256-цветному изображению с искусственной палитрой, причем искажения, возникающие при таком переходе, необратимы, и уже это обстоятельство не позволяет считать такой способ сжатия неискажающим(рис.1.10).

Рисунок 1.10 – Способы сжатия видео

Примечание: составлено автором

 

Большинство современных методов сжатия как неподвижных, так и видеоизображений, обеспечивающих сжатие в десятки, а иногда в сотни раз, предполагает некоторые потери, то есть восстановленное изображение не совпадает в точности с исходным [6].

 

 

Последнее изменение этой страницы: 2016-06-09

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...