Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Устройство и назначение системы питания КамАЗ – 740

Система питания КАМАЗ – 740

 

Устройство и назначение системы питания КамАЗ – 740

 

Образование горючей смеси у дизелей происходит не так, как у карбюраторных. У дизелей при такте впуска в цилиндры поступает чистый воздух, который сжимается там в 15 — 20 раз. В двигателях автомобилей КамАЗ — в 17 раз. За счет повышения давления температура воздуха достигает 600 - 900 градусов.

Образование горючей смеси происходит внутри цилиндра, куда топливо впрыскивается форсункой под давлением. Это давление значительно превышает давление сжатого в цилиндре воздуха. Скорость истечения топлива из форсунки достигает 150... 400 м/с. В результате трения о воздух струя топлива дробится на мелкие капли диаметром 0,002...0,003 мм. Мелкораспыленное топливо быстро испаряется и сгорает. Угол конуса распылителя зависит в основном от формы и размеров сопла, давления впрыска, вязкости топлива и давления воздуха в цилиндре. У дизелей смесеобразование происходит за 20...40° поворота коленчатого вала и составляет всего лишь 0,001 ...0,004 с, т.е. в 10—15 раз меньше, чем у карбюраторных двигателей. При таком ограниченном времени однородная качественная смесь может быть получена только при достаточно хорошем распылении и испаряемости топлива.

Для получения горючей смеси, способной быстро и полностью сгорать, нужно, чтобы топливо было распылено на возможно более мелкие частицы. Горение происходит только в присутствии кислорода, поэтому каждая частица топлива должна быть окружена необходимым для полного сгорания количеством кислорода воздуха. Это очень сложный процесс, и для его осуществления приходится наполнять цилиндр гораздо большим количеством воздуха, чем это требуется для полного сгорания топлива. Коэффициент избытка воздуха у дизелей достигает 1,2—1,65.

Чтобы уменьшить избыточное количество воздуха и повысить среднее эффективное давление и литровую мощность дизеля, необходимо улучшать смесеобразование. Этого можно добиться следующими мерами: форму камеры сгорания подобрать такую, чтобы она полнее обеспечивала распыление и перемешивание топливного факела, выходящего из сопел форсунки, с воздухом; создавать в камерах сгорания вихревое движение воздуха для наилучшего обеспечения распыления и перемешивания топлива с воздухом еще до момента самовоспламенения, что способствует более полному сгоранию топлива; путем оптимизации давления впрыска, давления воздуха в камере сгорания, направления выброса струй топлива из сопел форсунки добиваться максимально тонкого распыления топлива, что способствует лучшему испарению и горению топлива; за счет конструкции распылителей форсунок и формы камер сгорания добиваться однородного распыления топлива в виде капель примерно одинаковых размеров; дальнобойность выбрасываемых струй из сопел форсунок должна иметь требуемую величину. Дальнобойность топливного факела увеличивается при повышении давления впрыска и уменьшается при возрастании давления в камере сгорания за счет повышения сопротивления газовой среды проникновению частиц топлива.

Особенностью работы дизеля является то, что при различных оборотах коленчатого вала количество воздуха, поступающего в цилиндры двигателя, почти не меняется, а изменяется количество впрыскиваемого топлива. Из-за этого при малой частоте вращения коленчатого вала воздуха бывает достаточно с избытком, и топливо сгорает полностью. При увеличении частоты вращения коленчатого вала количество топлива, подаваемого в цилиндры, увеличивается, а количество воздуха в цилиндре остается постоянным и даже из-за уменьшения времени на такт впуска несколько уменьшается. В результате уменьшается коэффициент избытка воздуха и ухудшается процесс сгорания топлива. Чтобы дизель обладал наилучшими мощностными и экономическими показателями, впрыск топлива в цилиндр нужно начинать еще до прихода поршня в верхнюю мертвую точку (ВМТ) примерно за 10...20°, считая по обороту коленчатого вала.

Распространению использования дизелей на грузовых автомобилях способствуют их высокая топливная экономичность по сравнению с карбюраторными двигателями, надежность и возможность работы на более дешевом и тяжелом (менее опасном) топливе.

К системе питания дизельного двигателя относятся топливо- и воздухоподводящая аппаратура, выпускной газопровод и глушитель шума отработавших газов. В двигателе КамАЗ – 740 используется топливоподводящая аппаратура раздельного типа, у которой топливный насос высокого давления и форсунки конструктивно выполнены отдельно и соединены топливопроводами. Топливоподача осуществляется по двум основным магистралям: низкого и высокого давления. Назначение механизмов и узлов магистрали низкого давления состоит в хранении топлива, его фильтрации и подачи под малым давлением к насосу высокого давления. Механизмы и узлы магистрали высокого давления обеспечивают подачу и впрыскивание необходимого количества топлива в цилиндры двигателя.

 

Турбонаддув

 

Система турбонаддува Камаз-740 состоит из двух взаимозаменяемых турбокомпрессоров, компрессоров, впускных и выпускных коллекторов и патрубков.

Турбокомпрессор Камаз-740 установлен на выпускных коллекторах по одному на каждый ряд цилиндров. Уплотнение газовых стыков между установочными фланцами турбокомпрессоров и коллекторами осуществляется прокладками из жаропрочной стали.

Труба выпуска отработавших газов крепится к турбокомпрессору Камаз-740 с помощью натяжных фланцев, а герметичность соединений обеспечивается асбостальной прокладкой. Подшипники турбокомпрессора смазываются от системы смазывания двигателя.

Турбокомпрессор Камаз-740 ТКР 7 – агрегат, объединяющий центростремительную турбину и центробежный компрессор. Турбина преобразовывает энергию газов в работу сжатия воздуха компрессором.


 

Рис. 5. Турбокомпрессор:

1 - подшипник; 2 - экран; 3-корпус компрессора; 4 - диффузор; 5, 19 - кольцо уплотнительное; 6 - гайка; 7 - маслоотражатель; 8 -колесо компрессора; 9 - экран маслосбрасывающий; 10, 18 - крышки; 11 - корпус подшипника; 12 - фиксатор; 13 -переходник; 14 - прокладка асбостальная; 15 - экран турбины; 16 - колесо турбины; 17 - корпус турбины

 

Вращающаяся часть турбокомпрессора Камаз-740 – ротор – состоит из колеса, турбины с валом, колеса компрессора и маслоотражателя, закрепляемых на валу гайкой.

Ротор турбокомпрессора Камаз-740 вращается в подшипнике, представляющем собой плавающую невращающуюся моновтулку, удерживается от осевого и радиального перемещений фиксатором, который вместе с переходником является маслоподводящим каналом.

В корпусе подшипника устанавливаются стальные крышки и маслосбрасывающий экран , который вместе с невращающимися упругими разрезными уплотнительными кольцами предотвращает течь масла из полости корпуса подшипника.

Корпуса турбины и компрессора Камаз-740 крепятся к корпусу подшипника с помощью болтов и планок. Для уменьшения теплопередачи от корпуса турбины турбокомпрессора Камаз-740 к корпусу подшипника между ними установлен чугунный экран турбины и асбостальная прокладка.

Диффузор и экран образуют канал, по которому воздух после сжатия в колесе подается во внутреннюю полость корпуса.

 


 

Топливный бак.

Топливный бак состоит из двух штампованных и сварных половин из листовой стали. Внутри бака вварены перегородки, придающие ему необходимую жесткость. В нижней части, перегородок имеются вырезы для прохождения топлива в отсеки. В верхнюю часть бака вварена горловина для заливки топлива.

В верхнюю часть основного бака вмонтированы поплавковый датчик электрического указателя уровня топлива и расходный кран с фильтром. Бак оборудован крышкой, подобной радиаторной, с двумя клапанами и прокладкой, обеспечивающей его герметичность.

 

Рис. 6. Топливный бак:

1 — наливная горловина с крышкой; 2 — пробка сливного отверстия; 3 — расходный кран: 4 — сетчатый фильтр; 5 — перегородка; 6— фильтр-отстойник; 7— топливопровод; 8 — датчик уровня топлива; 9 — корпус.

 


 

Фильтр грубой очистки топлива

 

Фильтр грубой очистки топлива очищает топливо от крупных механических примесей. Фильтр, устанавливаемый на дизеля имеет сетчатый фильтрующий элемент, состоящий; из отражателя и латунной сетки с ячейками размером 0,09 мм. Фильтрующий элемент смонтирован на резьбовой втулке, которая: ввернута в корпус и прижимает к нему распределитель потока топлива, имеющий восемь равномерно расположенных по окружности отверстий.

Во время работы двигателя топливо подводится в фильтр через трубку и отверстия распределителя. Затем оно стекает вниз через кольцевую щель между отражателем и стенкой стакана. Часть; топлива по инерции попадает под успокоитель, где оседают крупные механические примеси и вода, находящаяся в топливе. Через центральное отверстие успокоителя топливо поднимается вверх к сетке фильтрующего элемента. Пройдя через сетчатый элемент, оно очищается от мелких механических примесей и поступает через центральное отверстие корпуса к отводящей трубке.

В фильтре грубой очистки топлива карбюраторных двигателей в качестве фильтрующего элемента используют набор пластин, изготовленных из алюминиевой ленты толщиной 0,15 мм. В пластинах выполнены выступы высотой 0,05 мм; отверстия для прохода топлива и два отверстия для фиксирующих стержней.

Топливо поступает в фильтр через входное отверстие и попадает в стакан. Поскольку скорость движения топлива в стакане резко уменьшается по сравнению со скоростью в топливопроводах, вода и крупные механические примеси отстаиваются и оседают на дно. Для периодического слива отстоя служит пробка. Топливо проходит в щель между пластинами и через отверстия в пластинах выходит очищенным в отводящее отверстие. Частицы крупнее 0,05 мм задерживаются фильтром.


 

Рис. 7. Фильтр грубой очистки топлива:

1 — пробка сливного отверстия; 2 — колпак; 3 — успокоитель; 4 — фильтрующий элемент; 5 — корпус фильтрующего элемента; 6 — распределитель топлива; 7 — болт; 8 — фланец; 9 — уплотнительное кольцо; 10 — корпус.

питание двигатель топливо газ

Фильтр тонкой очистки топлива

 

Фильтр тонкой очистки состоит из крышки и двух колпаков, внутри которых приварены центральные трубки, имеющие в нижней части выход наружу. Эти отверстия служат для удаления отстоя и закрываются пробками. На трубки надеваются фильтрующие элементы, изготовленные из специальной бумаги. Снизу на этих трубках фильтрующие элементы уплотнены, чтобы топливо не могло проходить между трубками и элементами. К крышкам фильтрующие элементы поджимаются пружинами.

В крышке фильтра имеется клапан-жиклер с пружиной и пробкой клапана. Этот клапан открывается при избыточном давлении в полости, и излишнее топливо по сливному трубопроводу стекает в топливный бачок предпускового подогревателя.

Топливо в фильтры тонкой очистки под давлением поступает из подкачивающего насоса низкого давления, продавливается через фильтрующие элементы, где очищается от мельчайших механических примесей, и через канал в крышке и трубопровод отводится в насос высокого давления.

С течением времени фильтрующие элементы засоряются и их гидравлическое сопротивление возрастает. Поэтому фильтрующие элементы необходимо периодически заменять, а фильтрующую сетку фильтра грубой очистки очищать и промывать.

 

Рис. 8. Фильтр тонкой очистки топлива:

1 — пробка сливного отверстия; 2 — фильтрующий элемент первой ступени; 3 — фильтрующий элемент второй ступени; 4 — продувочный вентиль; 5 —крышка; 6 — корпус.

 

Топливный насос высокого давления

 

Топливный насос высокого давления обеспечивает равномерную подачу строго дозированных порций топлива в каждый цилиндр двигателя в соответствии с порядком работы цилиндров и заданным режимом.

Топливный насос высокого давления оборудован топливоподкачивающим насосом низкого давления, автоматической муфтой опережения впрыска топлива и двухрежимным или всережимным механическим регулятором частоты вращения коленчатого вала двигателя. Каждый цилиндр двигателя обслуживается отдельным топливным насосом высокого давления. Для удобства работы и обслуживания все они собраны в общем корпусе и именуются секциями топливного насоса высокого давления.

Основными деталями топливного насос высокого давления является корпус, внутри которого на шариковых подшипниках и установлен кулачковый вал. Каждая секция насоса имеет втулку плунжера и плунжер. Над втулкой плунжера установлен нагнетательный клапан. Втулка плунжера, плунжер и нагнетательный клапан с седлом изготовлены с высокой точностью и представляют собой прецизионные пары, заменять одну деталь на другую в этой паре не допускается. Замену можно производить только в комплекте. К верхнему торцу втулки плунжера штуцером прижато седло нагнетательного клапана. К резьбовому концу штуцера с помощью накидной гайки прикреплен топливопровод высокого давления. Второй конец этого трубопровода соединен с форсункой. Плунжер через роликовый толкатель опирается на кулачки кулачкового вала. Плунжер имеет возвратную пружину. Пружина своим нижним концом через разрезную шайбу действует на плунжер, а верхний конец упирается через шайбу в корпус. На втулке плунжера имеются впускное и перепускное отверстия. Для изменения количества подаваемого в цилиндр топлива на плунжере сделана винтовая проточка, а также продольное сверление с выходом радиального сверления в верхнюю часть винтовой проточки. Для управления подачей топлива имеется зубчатая рейка и зубчатый сектор, находящиеся в зацеплении. Кулачковый вал получает вращение от муфты привода топливного насоса.

Каждая секция работает от кулачка распределительного вала. На кулачок опирается ролик толкателя, помещенного в корпус насоса. На пяту толкателя опирается плунжер. К толкателю плунжер прижимается пружиной. Пружина одним концом упирается в опорную шайбу, а через нее в опорную втулку. Другой конец пружины опирается на тарелку. Тарелка имеет разрез, а плунжер кольцевую проточку для этой тарелки. Плунжер входит во втулку плунжера. Втулка имеет впускное отверстие и перепускное отверстие.

Над втулкой плунжера устанавливается штуцер нагнетательного клапана. Плунжер имеет поворотную втулку и зубчатую рейку. Для изменения количества топлива, подаваемого в цилиндр двигателя, на плунжере имеется спиральная канавка, а также внутренний продольный канал с выходом через радиальное сверление в верхнюю часть спиральной канавки.

При сбегании кулачка распределительного вала с роликового толкателя толкатель опускается. Под действием пружины вслед за толкателем опускается и плунжер. При опускании плунжер сначала открывает впускное отверстие во втулке плунжера, через которое за счет давления, создаваемого подкачивающим насосом, внутрь втулки поступает топливо.

После открытия перепускного отверстия излишки топлива через канал отвода топлива возвращаются в топливный бак. При дальнейшем вращении распределительного вала кулачок начинает набегать на роликовый толкатель и поднимает его, а вместе с ним поднимается плунжер. При подъеме плунжер сначала закрывает перепускное отверстие, а затем и впускное отверстие. Моментом закрытия этого отверстия определяется начало подачи топлива к форсунке.

После закрытия впускного отверстия давление топлива в над-плунжерном пространстве возрастает, и, когда оно достигает величины 1,6 - 1,8 МПа, нагнетательный клапан, сжимая пружину, отходит от седла клапана, и топливо по трубопроводу высокого давления поступает к форсунке. При дальнейшем движении плунжера вверх давление в топливопроводе возрастает, и при достижении величины 16 - 19 МПа происходит впрыск топлива форсункой в камеру сгорания. Продолжая движение вверх, плунжер своей винтовой спиральной канавкой открывает перепускное отверстие во втулке, соединенное с отводным каналом. При открытии выходного канала топливо из надплунжерного пространства через осевое отверстие в плунжере и диаметральное отверстие отводится в топливный бак. Давление топлива над плунжером резко уменьшается и нагнетательный клапан под действием пружины закрывается. При опускании клапана до посадки на седло происходит увеличение объема пространства за клапаном и резкое падение давления в трубопроводе. Этим обеспечивается быстрая посадка в седло иглы распылителя форсунки и резкая отсечка подачи топлива в цилиндр.

Количество подаваемого плунжером топлива определяется длиной хода нагнетания, который изменяется поворотом плунжера относительно втулки, т.е. изменением положения спиральной канавки на плунжере относительно канала отвода топлива. Чем раньше спиральная канавка совпадает с каналом отвода топлива, тем меньше топлива будет впрыснуто в цилиндр и, следовательно, будет меньше частота вращения коленчатого вала двигателя, и наоборот.

К корпусу топливного насоса высокого давления в задней части прикреплен регулятор частоты вращения коленчатого вала. В зависимости от нагрузки двигателя он автоматически изменяет количество подаваемого в цилиндры топлива и поддерживает частоту вращения коленчатого вала, заданную водителем с помощью педали управления регулятором.


 

Рис. 9. Топливный насос высокого давления:

1 — рычаг корректора пусковых подач; 2 — фирменная табличка; 3 — вытеснитель топлива; 4 — штуцер топливного насоса; 5 — пружина нагнетательного клапана; 6 — нагнетательный клапан; 7 — плунжер; 8 — втулка плунжера; 9 — винты выпуска воздуха; 10 — поворотная втулка плунжера; 11 — зубчатый сектор; 12 — зубчатая рейка; 13 — регулировочные прокладки; 14 — пружина; 15 — толкатель; 16 — корпус насоса; 17 — ролик толкателя; 18, 25 — шариковые подшипники; 19 — кулачковый вал; 20 — крышка насоса; 21 — отводящий масляный канал; 22 — опора кулачкового вала; 23 — подводящий масляный канал; 24 — топливоподкачивающий насос; 26 — уплотнительная манжета; 27 — крышка подшипника; 28 — муфта опережения впрыскивания топлива; 29 — муфта привода топливного насоса.

 

Форсунки

 

Форсунки обеспечивают впрыск мелкораспыленного топлива под определенным давлением в камеры сгорания и четкую отсечку подачи в конце впрыскивания. Давление впрыска топлива находится в пределах 16-20 Мпа.

На дизелях применяют форсунки нескольких типов: открытые и закрытые, с распылителем, имеющим одно, два или несколько распыляющих отверстий (сопел). Сопла располагаются под определенными углами, обеспечивающими тонкое распыление топлива. Закрытыми называются форсунки с распыляющими отверстиями, закрытыми при помощи иглы. Эти отверстия открываются только в момент впрыскивания топлива в камеры сгорания. В настоящее время большинство дизелей имеет распылители форсунок с гидравлически управляемой иглой. Диаметр распыляющих отверстий 0,34 мм.

Форсунка состоит из корпуса с фильтрующим элементом и пружины. Сверху пружина упирается в опорную тарелку, а снизу, через вкладыш, действует на иглу. Пружина находится в предварительно сжатом состоянии. Давление пружины регулируется винтом. Регулировочный винт удерживается от самопроизвольного вращения контргайкой. Регулировочный винт имеет дренажный канал для слива просочившегося из корпуса распылителя топлива, которое сливается обратно в топливный бак. Распылитель имеет два распыляющих отверстия, которые закрываются иглой. Корпус распылителя вместе с иглой крепятся к корпусу форсунки накидной гайкой. Проставка и корпус иглы фиксируются в одном положении специальными штифтами. Форсунка установлена в гнезде головки цилиндра и закреплена скобой.

Топливо к форсунке подается из насоса высокого давления через канал внутрь корпуса распылителя, давление внутри которого возрастает. Это давление передается на заплечики иглы. Когда давление достигает величины 19 МПа (190 кгс/см2), игла, преодолевая сопротивление пружины, поднимается, открывая распыляющие отверстия, через которые топливо впрыскивается в камеру сгорания цилиндра в мелкораспыленном виде.

Рис. 10. Форсунка:

1 — колпак; 2 — штуцер для топливопровода; 3 — сетчатый фильтр; 4 — гайка распылителя; 5 — корпус распылителя; 6 — игла распылителя; 7 — штифт; 8 — корпус; 9 — штанга; 10 — пружина; 11 — регулировочный винт; 12 — контргайка.

 

Воздушный фильтр

 

При использовании воздушных фильтров уменьшается изнашивание деталей цилиндропоршневой группы в несколько раз, поскольку они очищают воздух от пыли, в которой содержатся твердые частицы. Наибольшее распространение на автомобилях получили двухступенчатые инерционно-масляные воздушные фильтры и сухие со сменными фильтрующими элементами.

На автомобилях КамАЗ устанавливается сзади кабины. Фильтры снабжены сменным фильтрующим элементом с инерционной решеткой. Фильтр состоит из корпуса, крышки фильтра, фильтрующего элемента, патрубка отсоса пыли, входного патрубка, выходного патрубка. Забор воздуха происходит через трубу воздухозаборника, прикрытую колпаком. От воздухозаборника к фильтру идет входная труба, а от воздухоочистителя выходная труба. В левой впускной трубе установлен индикатор состояния воздушного фильтра. Воздух через воздухозаборник поступает внутрь фильтра и проходит через пылеотстойник. Здесь задерживается основная масса крупных частиц пыли, которые отсасываются через патрубок в глушитель. Затем воздух, меняя направление, проходит через фильтрующий элемент, где осуществляется окончательная его очистка. Чистый воздух из воздушного фильтра через соединительную трубу поступает к впускным трубопроводам двигателя.

 

Рис. 11. Воздушный фильтр:

1 - корпус; 2 - фильтрующий элемент; 3 - выходной патрубок; 4 - патрубок системы отсоса пыли; 5 - защелка; 6 - крышка; 7 - гайка крепления фильтрующего элемента; 8 - держатель фильтрующего элемента; 9 - уплотнительное кольцо; 10 - входной патрубок.


 

Рекомендации к эксплуатации

 

От четкой и слаженной работы всех комплектующих КамАЗа зависит не только более полное использование всех мощностей автомобиля при выполнении различных целевых задач, но и обеспечение норм безопасности движения транспортных средств.

Комплектующие двигателя играют особую роль при эксплуатации автомобиля. Своевременное проведение технического обслуживания и ремонта (текущего и капитального) двигателя нормализует работу автомобиля и позволяет качественно и количественно увеличить срок его эксплуатации.

 


 

Силовая передача Т – 25

Силовая передача, или трансмиссия, объединяет узлы и механизмы трактора, при помощи которых крутящий момент передается от двигателя к ведущим колесам.

Механизмы силовой передачи обеспечивают также отключение работающего двигателя при остановке трактора, изменение скорости и направления вращения ведущих колес, отбор мощности двигателя для привода других машин и механизмов.

Силовая передача состоит из муфты сцепления, коробки передач, центральной передачи, дифференциала и конечных передач.

Основная часть механизмов силовой передачи трактора Т-25 размещена в общем картере и называется главной передачей. В нее входят: коробка перемены передач, механизм для изменения направления движения (механизм реверса), центральная передача с удвоителем, узел дополнительных (пониженных) передач и механизм дифференциала. Схема силовой передачи трактора показана на рис. 49. Модули и числа зубьев шестерен силовой передачи даны в таблице (стр. 61).

 

 

Крутящий момент от двигателя к ведущим колесам трактора передается так. Коленчатый вал 1 двигателя связан с первичным валом 7 главной передачи через муфту сцепления 2 и соединительную муфту 6. Коническая шестерня Z5 первичного вала главной передачи находится в постоянном зацеплении с двумя коническими шестернями Z6, свободно вращающимися на зубчатой втулке промежуточного вала 9. Конические шестерни имеют зубчатые венцы Z25, каждый из которых может быть соединен подвижной муфтой с зубчатой втулкой Z24, закрепленной на промежуточном валу.

 


Комплект конических шестерен с подвижной зубчатой муфтой и сопрягаемыми деталями называют механизмом для изменения направления вращения, или механизмом реверса. В зависимости от того, какая из конических шестерен будет соединена с промежуточным валом, он будет вращаться в том или другом направлении, а трактор соответственно будет двигаться вперед (включена правая коническая шестерня) или назад (включена левая коническая шестерня).

Скорости движения трактора при постоянных оборотах коленчатого вала двигателя изменяют переключением подвижных шестерен промежуточного вала 9 и главного вала 10 при выключенной муфте сцепления.

На промежуточном валу 9 расположены три подвижные (ведущие) шестерни Z7, Z9, Z11. С промежуточного вала вращение передается

на главный вал 10 через какую-либо подвижную шестерню, соединяющуюся с одной из ведомых шестерен Z8, Z10, Z12, неподвижно закрепленных на главном валу.

Так как ведущие и ведомые шестерни имеют разное число зубьев, то в зависимости от того, какая из трех пар шестерен находится в зацеплении, главный вал будет вращаться с различным числом оборотов при постоянном числе оборотов промежуточного вала и соответственно трактор будет двигаться с тремя различными скоростями переднего или заднего хода.

Дальнейшее увеличение числа передач трактора до шести передач переднего или заднего хода достигают при помощи центральной передачи с удвоителем. Этот механизм состоит из подвижной шестерни Z13 с зубчатой муфтой Z26, шестерни постоянного зацепления Z15, выполненной заодно с зубчатой муфтой Z27, и двух зубчатых венцов Z14 и Z16 закрепленных на корпусе дифференциала. Шестерня Z15 свободно вращается на втулке, закрепленной на главном валу, и находится в постоянном зацеплении с зубчатым венцом Z16.


Подвижную шестерню Z13 вводят в зацепление либо непосредственно с зубчатым венцом Z14 корпуса дифференциала, либо при помощи муфты Z26 с зубчатой муфтой Z27 шестерни постоянного зацепления Z15. При этом шестерня Z15 начинает вращаться заодно с главным валом и

через зубчатый венед Z16 передавать вращение на корпус дифференциала 13.

 

 

Шестерня Z13 имеет меньшее число зубьев, чем шестерня Z15, а у зубчатого венца Z14 больше зубьев, чем у венца Z16. Поэтому при одном и том же числе оборотов главного вала число оборотов корпуса дифференциала будет меньше, когда вращение передается через пару шестерен Z13 (замедленный ряд передач),
и больше, когда вращение передается через пару шестерен Z15 и Z16 (ускоренный ряд передач).

Вместе с корпусом дифференциала вращаются ось с сателлитами Z17 и находящиеся в зацеплении с ними конические полуосевые шестерни Z18. Соединенные с коническими шестернями дифференциала полуоси 14 (валы ведущих шестерен бортовых передач) передают вращение к ведущим колесам 16 через шестерни Z19 и Z20.

Наличие шести передач позволяет эффективно использовать трактор на различных работах, повышая, при необходимости, силу тяги при меньшей скорости движения, или, наоборот, увеличив скорость движения при меньшей силе тяги.

В главной передаче трактора Т-25 предусмотрены также две дополнительные пониженные скорости переднего хода. Эти скорости нужны для выполнения сельскохозяйственных операций, требующих небольших скоростей, например для работы с рассадопосадочными машинами. Для получения дополнительных скоростей служит пара шестерен Z3 и Z4 постоянного зацепления. Вращение нижнего приводного вала 17 передается через пару конических шестерен Z21 и Z22, находящихся в постоянном зацеплении, на подвижную шестерню Z23. Для включения дополнительной (пониженной) передачи шестерню Z23 вводят в зацепление с ведомой шестерней Z12 на главном валу. Далее вращение передается через подвижную шестерню удвоителя на дифференциал и бортовые передачи. В зависимости от положения шестерни удвоителя может быть включена I или II дополнительная передачи. Движение трактора при этом возможно только вперед, так как передача вращения от двигателя к ведущим колесам минует конические шестерни механизма реверса.

При помощи тормозных шкивов 12, установленных на валах ведущих шестерен бортовых передач, трактор останавливают. Притормаживая одну полуось, осуществляют крутой поворот.

В силовой передаче трактора предусмотрен отбор мощности от двигателя через кожух муфты сцепления, полый вал 3 и шестерни
постоянного зацепления Z1 и Z2 для привода шестеренчатого насоса 5 гидравлической системы трактора.

Для привода различных машин и орудий на конец промежуточного вала устанавливают шкив 8. От приводного валика дополнительной передачи получает вращение вал 15 отбора мощности.

Схема положения шестерен и передача вращения при включении передач показана на рис. 50.

 

 

Рис. 49. Схема силовой передачи трактора:
1 — коленчатый вал двигателя; 2 — муфта сцепления; 3 —полый вал привода гидронасоса; 4 — привод гидронасоса; 5 — шестеренчатый насос гидравлической системы; 6 — соединительная муфта; 7 — первичный вал главной передачи; 8 — приводной шкив; и — промежуточный вал; 10— главный вал; 11—Сортовая (конечная) передача: 12 — шкив тормоза; 13 -дифференциал; 14 — полуось (ведущий вал бортовой передачи); 15 — вал отбора мощности; 10 — ведущее колесо, 17 — приводной вал дополнительной передачи.

 

 

 

 

Рис. 50. Схема положения шестерен главной передачи при включении передачи:
а — первая передача; б — вторая передача; в — третья передача; г — четвертая передача; д — пятая передача; е — шестая передача; ж — первая дополнительная передача, и — вторая дополнительная передача; 1 — первичный вал;
2 — механизм реверса; 3 — промежуточный вал;
4 — главный вал; 5 — корпус дифференциала;
6 — подвижная шестерня удвоителя; темной стрелкой показана передача вращения на прямом ходе, светлой — передача вращения на реверсивном ходе,

 

Система питания КАМАЗ – 740

 

Устройство и назначение системы питания КамАЗ – 740

 

Образование горючей смеси у дизелей происходит не так, как у карбюраторных. У дизелей при такте впуска в цилиндры поступает чистый воздух, который сжимается там в 15 — 20 раз. В двигателях автомобилей КамАЗ — в 17 раз. За счет повышения давления температура воздуха достигает 600 - 900 градусов.

Образование горючей смеси происходит внутри цилиндра, куда топливо впрыскивается форсункой под давлением. Это давление значительно превышает давление сжатого в цилиндре воздуха. Скорость истечения топлива из форсунки достигает 150... 400 м/с. В результате трения о воздух струя топлива дробится на мелкие капли диаметром 0,002...0,003 мм. Мелкораспыленное топливо быстро испаряется и сгорает. Угол конуса распылителя зависит в основном от формы и размеров сопла, давления впрыска, вязкости топлива и давления воздуха в цилиндре. У дизелей смесеобразование происходит за 20...40° поворота коленчатого вала и составляет всего лишь 0,001 ...0,004 с, т.е. в 10—15 раз меньше, чем у карбюраторных двигателей. При таком ограниченном времени однородная качественная смесь может быть получена только при достаточно хорошем распылении и испаряемости топлива.

Для получения горючей смеси, способной быстро и полностью сгорать, нужно, чтобы топливо было распылено на возможно более мелкие частицы. Горение происходит только в присутствии кислорода, поэтому каждая частица топлива должна быть окружена необходимым для полного сгорания количеством кислорода воздуха. Это очень сложный процесс, и для его осуществления приходится наполнять цилиндр гораздо большим количеством воздуха, чем это требуется для полного сгорания топлива. Коэффициент избытка воздуха у дизелей достигает 1,2—1,65.

Чтобы уменьшить избыточное количество воздуха и повысить среднее эффективное давление и литровую мощность дизеля, необходимо улучшать смесеобразование. Этого можно добиться следующими мерами: форму камеры сгорания подобрать такую, чтобы она полнее обеспечивала распыление и перемешивание топливного факела, выходящего из сопел форсунки, с воздухом; создавать в камерах сгорания вихревое движение воздуха для наилучшего обеспечения распыления и перемешивания топлива с воздухом еще до момента самовоспламенения, что способствует более полному сгоранию топлива; путем оптимизации давления впрыска, давления воздуха в камере сгорания, направления выброса струй топлива из сопел форсунки добиваться максимально тонкого распыления топлива, что способствует лучшему испарению и горению топлива; за счет конструкции распылителей форсунок и формы камер сгорания добиваться однородного распыления топлива в виде капель примерно одинаковых размеров; дальнобойность выбрасываемых струй из сопел форсунок должна иметь требуемую величину. Дальнобойность топливного факела увеличивается при повышении давления впрыска и уменьшается при возрастании давления в камере сгорания за счет повышения сопротивления газовой среды проникновению частиц топлива.

Особенностью работы дизеля является то, что при различных оборотах коленчатого вала количество воздуха, поступающего в цилиндры двигателя, почти не меняется, а изменяется количество впрыскиваемого топлива. Из-за этого при малой частоте вращения коленчатого вала воздуха бывает достаточно с избытком, и топливо сгорает полностью. При увеличении частоты вращения коленчатого вала количество топлива, подаваемого в цилиндры, увеличивается, а количество воздуха в цилиндре остается постоянным и даже из-за уменьшения времени на такт впуска несколько уменьшается. В результате уменьшается коэффициент избытка воздуха и ухудшается процесс сгорания топлива. Чтобы дизель обладал наилучшими мощностными и экономическими показателями, впрыск топлива в цилиндр нужно начинать еще до прихода поршня в верхнюю мертвую точку (ВМТ) примерно за 10...20°, считая по обороту коленчатого вала.

Распространению использования дизелей на грузовых автомобилях способствуют их высокая топливная экономичность по сравнению с карбюраторными двигателями, надежность и возможность работы на более дешевом и тяжелом (менее опасном) топливе.

К системе питания дизельного двигателя относятся топливо- и воздухоподводящая аппаратура, выпускной газопровод и глушитель шума отработавших газов. В двигателе КамАЗ – 740 используется топливоподводящая аппаратура раздельного типа, у которой топливный насос высокого давления и форсунки конструктивно выполнены отдельно и соединены топливопроводами. Топливоподача осуществляется по двум основным магистралям: низкого и высокого давления. Назначение механизмов и узлов магистрали низкого давления состоит в хранении топлива, его фильтрации и подачи под малым давлением к насосу высокого давления. Механизмы и узлы магистрали высокого давления обеспечивают подачу и впрыскивание необходимого количества топлива в цилиндры двигателя.

 

Последнее изменение этой страницы: 2016-06-09

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...