Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






ГЛАВА 3. КВАНТОВАЯ ФИЗИКА И КОНЧИНА МАТЕРИАЛЬНОГО РЕАЛИЗМА

 

Почти век назад в физике был сделан ряд экспериментальных открытий, требовавших изменения нашего мировоззрения. То, что обнаруживалось в этих экспериментах, представляло собой, по словам философа Томаса Куна, аномалии, которые не могла объяснить классическая физика. Эти аномалии открывали путь к революции в научной мысли.

Представьте себе, что вы — физик на пороге нового столетия. Одна из аномалий, которые хотите понять вы и ваши коллеги, касается того, как нагретые тела испускают излучение. Будучи физиком ньютоновской школы, вы считаете, что вселенная — это классическая машина, состоящая из частей, ведущих себя в соответствии с законами ньютоновской механики, которые почти все полностью известны. Вы верите, что, располагая всей информацией о частях и справившись с немногими оставшимися трудностями в отношении законов, вы сможете навсегда предсказать будущее вселенной. Однако эти немногие оставшиеся трудности неприятны. Вы не готовы отвечать на вопросы, касающиеся, например, того, каков закон излучения нагретых тел.

Вообразите, что в то время как вы ломаете голову над этим вопросом, ваша жена удобно устроилась рядом с вами перед горящим камином.

Вы (бормоча): Я просто не могу этого понять.

Она : Передай мне орешки.

Вы (передавая орешки ): Я просто не могу понять, почему мы сейчас не загораем.

Она (смеясь): Ну, это было бы мило. У нас могли бы даже быть основания пользоваться камином в летнее время.

Вы: Понимаешь, теория говорит, что излучение от камина должно быть так же богато ультрафиолетом, как солнечный свет. Но что делает именно солнечный свет, а не свет камина, богатым этими высокими частотами? Почему мы сейчас не загораем, принимая ультрафиолетовую ванну?

Она: Подожди, пожалуйста. Чтобы я могла слушать это серьезно, тебе придется чуть замедлить темп и объяснить. Что такое частота? Что такое ультрафиолет?

Вы: Извини. Частота — это число периодов в секунду. Это мера того, как быстро колеблется волна. Для света это означает цвет. Белый свет состоит из света разных частот, или цветов. Красный — это низкочастотный свет, а фиолетовый — высокочастотный свет. Если частота еще выше, то это невидимый черный цвет, который мы называем ультрафиолетовым.

Она: Ладно, значит, и свет от горящих дров, и свет от солнца должен содержать массу ультрафиолета. К сожалению, солнце подчиняется вашей теории, а горящие дрова — нет. Быть может, в горящих дровах есть нечто особенное...

Вы: В действительности, все еще хуже. Все источники света, а не только солнце или горящие дрова должны давать большие количества ультрафиолета.

Она: А, это уже становится интересно. Инфляция ультрафиолета вездесуща. Но разве за всякой инфляцией не следует спад? Разве не поется в песенке, что все поднимающееся должно падать? (Она начинает напевать без слов.)

Вы (раздражаясь ): Но как?

Она ( протягивая миску с орешками): Хочешь орешков, дорогой?

(Беседа заканчивается. )

 

 

Планк совершает первый квантовый скачок

 

В конце XIX в. многие физики испытывали разочарование, пока один из них не нарушил общую тенденцию — это был Макс Планк из Германии. В 1900 г. Планк совершил смелый концептуальный прорыв, заявив, что старой теории необходим квантовый скачок (он заимствовал слово квант, означающее «количество», из латыни). Излучение света раскаленными телами — например, горящими дровами или солнцем — вызывается электронами, крохотными колеблющимися электрическими зарядами. Эти электроны поглощают энергию из нагретой среды, например камина, и затем испускают ее обратно в виде излучения. Эта часть старой физики была верной, но затем классическая физика предсказывала, что испускаемое излучение должно быть богато ультрафиолетом, чему противоречили наши наблюдения. Планк (весьма храбро) объявил, что проблему испускания разных количеств ультрафиолета можно решить, если допустить, что электроны испускают или поглощают энергию только определенными дискретными порциями, которые он назвал «квантами» энергии[7].

Чтобы понять смысл кванта энергии, рассмотрим такую аналогию. Сравните случай шарика, катящегося по лестнице, со случаем, когда он катится по наклонной плоскости (рис. 1), на наклонной плоскости может занимать любое положение, и его положение может меняться на любую величину. Таким образом, это модель непрерывности, представляющая то, как мы думаем в классической физике. По контрасту, шарик на лестнице может находиться только на той или иной ступени; его положение (и его энергия, которая связана с положением) «квантовано».

 

 

Рнс. 1. Квантовый скачок. На наклонной плоскости классическое движение шарика является непрерывным; на лестнице квантовой движение происходит в виде дискретных стадий (квантовых скачков)

 

Вы можете возразить — что происходит, когда шарик падает с одной ступени на другую? Разве во время своего спуска он не занимает промежуточные положения? Именно здесь проявляется необычность квантовой теории. Для шарика на лестнице ответ, очевидно, должен быть положительным, но для случая квантового шарика (атома или электрона) теория Планка дает отрицательный ответ. Квантовый шарик никогда не может быть обнаружен в любом промежуточном положении между двумя ступеньками; он находится либо на одной, либо на другой. Это — квантовая прерывистость.

Итак, почему вы не можете получить загар от огня дров в камине? Представьте себе маятник на ветру Обычно в такой ситуации маятник будет раскачиваться, даже если ветер не очень сильный. Предположите, однако, что маятник может поглощать энергию только дискретными порциями большой величины. Иными словами, это квантовый маятник. Что тогда? Ясно, что если только ветер не способен давать требуемое высокое нарастание энергии за один шаг, то маятник не будет двигаться. Поглощение небольших значений энергии не позволит ему накопить достаточно энергии для преодоления порога. Так и с колеблющимися электронами в камине. В результате небольших квантовых скачков возникает низкочастотное излучение, но для высокочастотного излучения требуются большие квантовые скачки. Большой квантовый скачок должен вызываться большим количеством энергии в среде, окружающей электрон; энергия дров, горяших в камине, просто недостаточно сильна, чтобы создавать условия для выделения большого количества голубого света, не говоря уже об ультрафиолете. Вот по какой причине нельзя загореть, сидя у камина.

Насколько известно, Планк был довольно традиционным ученым и с неохотой обнародовал свои идеи относительно квантов энергии. Он даже занимался своей математикой стоя, как в то время было принято в Германии. Ему не особенно нравились следствия его новаторской идеи; однако ученым, которым предстояло продвинуть революцию намного дальше, становилось ясно, что они указывают на совершенно новый способ понимания нашей физической реальности.

 

 

Фотоны Эйнштейна и атом Бора

 

Одним из этих революционеров был Альберт Эйнштейн. В то время когда он опубликовал свою первую исследовательскую статью по квантовой теории, он работал клерком в патентном бюро в Цюрихе (1900). Подвергнув сомнению популярное в то время представление о волновой природе света, Эйнштейн выдвинул гипотезу, что свет существует в идее кванта — дискретного пучка энергии, — который мы теперь называем фотоном. Чем выше частота света, тем большую энергию имеет каждый пучок.

Еще большим революционером был датский физик Нильс Бор, который в 1913 г. использовал идею кванта света для формулировки гипотезы, согласно которой весь мир атома полон квантовых скачков. Нас всех учили, что атом похож на миниатюрную солнечную систему, что электроны вращаются вокруг ядра во многом подобно тому, как планеты вращаются вокруг Солнца. Возможно, вам будет интересно узнать, что эта модель, предложенная английским физиком Эрнстом Резерфордом, имела решающий недостаток, который устраняла работа Бора.

Представьте себе рой движущихся по орбитам спутников, которые довольно регулярно запускают с Земли с помощью космических ракет. Эти спутники существуют не вечно. Вследствие столкновения с земной атмосферой, они теряют энергию и замедляют свое движение. Их орбиты сужаются, и, в конечном счете, они падают на Землю (рис. 2).

 

 

Рис. 2. Орбиты спутников, вращающихся вокруг Земли, неустойчивы. Так же ведут себя и орбиты электронов в модели атома Резерфорда

 

Согласно классической физике, электроны, окружающие атомное ядро, тоже должны были бы терять энергию вследствие непрерывного излучения света и в конце концов падать на ядро. Поэтому планетарная модель атома неустойчива. Однако Бор (который, предположительно, увидел планетарную систему атома во сне) создал устойчивую модель атома, применив идею квантового скачка.

Предположим, говорил Бор, что орбиты электронов дискретны, подобно квантам энергии Планка. Тогда орбиты можно представлять себе как образующие энергетическую лестницу (рис. 3). Они стационарны — величина их энергии остается неизменной. Находясь на этих квантованных орбитах, электроны не излучают света. Электрон испускает квант света, только когда перескакивает с орбиты с более высокой энергией на орбиту с более низкой (со ступени лестницы с более высокой энергией на более низкую ступень). Таким образом, если электрон находится на орбите с самой низкой энергией, у него нет более низкого уровня, куда бы он мог перескакивать. Эта конфигурация базового уровня устойчива, и у электрона нет никаких шансов упасть на ядро. Все физики встретили модель атома Бора вздохом облегчения.

 

 

Рис. 3. Орбита Бора и квантовый скачок: а — квантованные орбиты Бора. Атомы испускают свет, когда электроны перескакивают с орбиты на орбиту; б — для квантовых скачков по энергетической лестнице нет нужды проходить через промежуточное пространство между ступенями

 

Бор отсек голову Гидре неустойчивости, но на ее месте вырастала другая. Согласно Бору, электрон никогда не может занимать никакое положение между орбитами; таким образом, совершая скачок, он должен каким-то образом непосредственно переходить на другую орбиту. Это не орбитальный прыжок через пространство, а что-то радикально новое. Хотя, возможно, было бы соблазнительно изображать скачок электрона как прыжок с одной ступеньки лестницы на другую, однако электрон совершает скачок, не пересекая пространство между ступеньками. Вместо этого он как будто исчезает на одной ступеньке, снова появляясь на другой — без какого бы то ни было непрерывного перехода. Больше того, нельзя сказать, куда он собирается перескакивать, если существует больше одной более низкой ступени, между которыми он может выбирать. Можно давать лишь вероятностные предсказания.

 

 

Корпускулярно-волновой дуализм

 

Возможно, вы заметили в квантовой концепции света кое-что странное. Говорить, что свет существует в виде квантов, фотонов, — значит утверждать, что свет состоит из частиц, подобных песчинкам. Однако такое утверждение во многом противоречит повседневному опыту, который мы получаем, имея дело со светом.

Представьте себе, например, что вы смотрите на отдаленный уличный фонарь через ткань матерчатого зонтика. Вы не увидите непрерывный поток света, проходящий насквозь, как следовало бы ожидать, если бы свет состоял из крохотных частиц (насыпьте песка в решето, и вы увидите, что я имею в виду). Вместо этого вы увидите узор из чередующихся темных и светлых каемок, который технически называется интерференционной картиной. Свет изгибается в нитях ткани и вокруг них, создавая картину, которую могут образовывать только волны. Таким образом, даже наш повседневный опыт показывает, что свет ведет себя как волна.

Тем не менее квантовая теория настаивает, что свет также ведет себя как пучок частиц, или фотонов. Наши глаза представляют собой такой замечательный инструмент, что мы можем сами наблюдать квантовую, зернистую природу света. В следующий раз, расставаясь с близким человеком в сумерках, обратите внимание на то, как вы видите удаляющуюся фигуру. Заметьте, что очертания удаляющегося объекта выглядят фрагментарными. Если бы световая энергия, отражающаяся от этого объекта и попадающая в оптические рецепторы вашей сетчатки, обладала волноподобной непрерывностью, то как минимум какой-то свет от каждой части объекта должен был бы всегда возбуждать ваши оптические рецепторы. Вы бы всегда видели полный образ. (Следует признать, что в слабом свете контраст между темным и светлым был бы не очень ясным, но это не влияло бы на четкость очертаний.) Однако вместо этого вы видите вовсе не четкие очертания, так как рецепторы ваших глаз реагируют на индивидуальные фотоны. В тусклом свете меньше фотонов, чем в ярком; поэтому в этой гипотетической сумеречной ситуации в любое данное время будут стимулироваться лишь немногие из ваших рецепторов — слишком немногие, чтобы определять очертания слабо освещенной фигуры. Следовательно, образ, который вы видите, будет фрагментарным.

Возможно, вам не дает покоя еще один вопрос: почему рецепторы не могут хранить данные бесконечно, пока мозг не соберет достаточно информации, чтобы собрать все фрагментарные картины в одно целое? К счастью для квантовых физиков, которые всегда отчаянно нуждаются в повседневных примерах квантовых явлений, оптические рецепторы могут хранить информацию лишь доли секунды. В тусклом свете в любой данный момент в ваших глазах будет возбуждаться недостаточно рецепторов для создания полного изображения. Когда в следующий раз в сумерках вы будете говорить «прощай» неясной удаляющейся фигуре любимого человека, не забудьте подумать о квантовой природе света; это, несомненно, уменьшит боль вашей разлуки[8].

Когда свет рассматривается как волна, он оказывается способным одновременно быть в двух (или более местах) — как в случае, когда он проходит через отверстия ткани зонтика, и образует дифракционную картину; однако, когда мы улавливаем его на фотографической пленке, он проявляется дискретно, отдельными пятнышками, подобно потоку частиц. Таким образом, свет должен быть и волной, и частицей. Парадоксально, не так ли? Дело касается одного из бастионов старой физики: однозначного описания на естественном языке. Кроме того, на карту поставлена сама идея объективности: зависит ли природа света — то, чем является свет, — от того, как мы его наблюдаем?

И как если бы парадоксы, касающиеся света, были недостаточно вызывающими, неизбежно возникает еще один вопрос: может ли материальный объект, например электрон, быть и волной, и частицей? Может ли он обладать двойственностью, подобной двойственности света? Физиком, который впервые поставил этот вопрос и упорно давал на него положительный ответ, потрясший всех его коллег, был французский аристократ Луи Виктор де Бройль.

 

 

Волны материи

 

Когда де Бройль примерно в 1924 г. писал свою кандидатскую диссертацию, он провел параллель между дискретностью стационарных орбит атома Бора и дискретностью звуковых волн, производимых гитарой. Параллель оказалась плодотворной.

Представьте себе движение звуковой волны в некоторой среде (рис. 4). Вертикальное смещение частиц среды меняется от ноля до максимума (гребень), обратно до ноля, до отрицательного максимума (впадины), опять до ноля, и так далее с увеличением расстояния. Максимальное вертикальное смещение в одном направлении (от ноля до гребня или впадины) называется амплитудой. Отдельные частицы среды движутся взад и вперед относительно своего покоящегося положения. Однако волна, проходящая через среду, распространяется. Волна представляет собой распространяющееся возмущение. Число гребней, проходящих через данную точку за секунду, называется частотой волны, а расстояние от гребня до гребня — длиной волны.

 

 

Рис. 4. Графическое представление волны

 

Щипок гитарной струны приводит ее в движение, но возникающие колебания называются стационарными (стоячими волнами), поскольку они не распространяются за пределы струны. В любом данном месте струны смещение частиц струны меняется во времени: имеет место волнистость, но волны не распространяются в пространстве (рис. 5). Распространяющиеся волны, которые мы слышим, приводятся в движение стоячими волнами колеблющихся струн.

 

 

Рис. 5. Первые несколько гармоник стационарной, или стоячей, волны в гитарной струне

 

Музыкальная нота гитары состоит из целого ряда звуков — спектра частот. Де Бройля заинтересовало то, что стоячие волны гитарной струны создают дискретный спектр частот, называемых гармониками. Звук самой низкой частоты называется первой гармоникой, которая определяет слышимый нами тон. Более высокие гармоники — музыкальные звуки, придающие ноте ее характерное качество, — имеют частоты, кратные частоте первой гармоники.

Стационарность представляет собой свойство волн в ограниченном пространстве. Такие волны легко вызвать в чашке чая. Де Бройль спрашивал — являются ли электроны атома локализованными (удерживаемыми) волнами? Если да, то образуют ли они дискретные стационарные волновые паттерны? Например, может быть, самая низкая атомная орбита — это та, на которой один электрон образует стационарную волну наименьшей частоты — первую гармонику, — а более высокие орбиты соответствуют стационарным электронным волнам более высоких гармоник (рис. 6).

 

 

Рис. 6. Идея де Бройля: не могут ли электроны быть стационарными волнами в ограниченном пространстве атома?

 

Разумеется, де Бройль приводил в поддержку своей идеи гораздо более сложные доводы, но все равно ему было трудно добиться одобрения своей диссертации. В конце концов ее послали на отзыв Эйнштейну. Эйнштейну, который первым осознал двойственную природу света, было не трудно понять, что де Бройль вполне мог быть прав: материя вполне может быть такой же двойственной, как свет. Де Бройлю присудили искомую степень, когда Эйнштейн дал о его диссертации такой отзыв: «Это может выглядеть безумным, но, в действительности, это логично».

В науке окончательным арбитром всегда служит эксперимент. Правильность идеи де Бройля о волновой природе электрона блестяще продемонстрировал эксперимент, в котором пучок электронов пропускали через кристалл (трехмерный «зонтик», подходящий для дифракции электронов) и фотографировали. Получилась дифракционная картина (рис. 7).

 

 

Рис. 7. Концентрические дифракционные кольца показывают волновую природу электронов

 

Если материя — волна, язвительно заметил один физик другому в конце проходившего в 1926 г. семинара, посвященного волнам де Бройля, то должно быть волновое уравнение, описывающее волну материи. Физик, которому принадлежало это замечание, сразу же забыл о нем, но тот, кто его услышал, — Эрвин Шрёдингер — в дальнейшем открыл волновое уравнение для материи, теперь известное как уравнение Шредингера. Оно является краеугольным камнем, заменившим в новой физике законы Ньютона. Уравнение Шрёдингера используется для предсказания всех удивительных качеств субмикроскопических объектов, обнаруживаемых в наших лабораторных экспериментах. Вернер Гейзенберг открыл это же самое уравнение еще раньше, но в менее четкой математической форме. Математический формализм, выросший из работ Шрёдингера и Гейзенберга, называется квантовой механикой.

Предложенная де Бройлем и Шрёдингером идея волны материи порождает удивительную картину атома. Она объясняет простыми терминами три самых важных свойства атомов: их устойчивость, их тождественность друг другу и их способность восстанавливаться. Я уже объяснял, как возникает устойчивость, — это был великий вклад Бора. Тождественность атомов определенного вида — это просто следствие тождественности волновых паттернов в ограниченном пространстве; структура стационарных паттернов определяется тем, каким образом ограничивается движение электронов, а не их окружением. Музыка атома, его волновой паттерн, остается одной и той же, независимо от того, где он находится — на Земле или в туманности Андромеды. Более того, стационарный паттерн, зависящий только от условий своего ограничения, не имеет никаких следов прошлой истории, никакой памяти; он снова и снова восстанавливается в том же самом виде.

 

 

Волны вероятности

 

Волны электронов не похожи на обычные волны. Даже в эксперименте по дифракции индивидуальные электроны обнаруживаются на фотографической пластинке как локализованные индивидуальные события; только наблюдая паттерн, создаваемый всем пучком электронов, мы обнаруживаем свидетельство их волновой природы — дифракционную картину. Волны электронов — это волны вероятности, говорил физик Макс Борн. Они дают нам вероятности: например, мы, весьма вероятно, обнаружим частицу там, где волновые возмущения (или амплитуды) велики. Если вероятность нахождения частицы мала, амплитуда волны будет слабой. Представьте себе, что вы наблюдаете уличное движение с вертолета, висящего над улицами Лос-Анджелеса. Если бы автомобили описывались уравнением Шрёдингера, мы бы сказали, что волна сильна в местах транспортных пробок, а между пробками волна слаба.

Кроме того, волны электронов принято представлять как волновые пакеты . Используя понятие пакетов, мы можем делать амплитуду волны большей в определенных областях пространства, и малой во всех остальных местах (рис. 8). Это важно, поскольку волна должна представлять локализованную частицу. Волновой пакет — это пакет вероятности, и Борн утверждал, что для волн электронов квадрат амплитуды волны — технически называемый волновой функцией — в некоторой точке пространства дает нам вероятность обнаружения электрона в этой точке. Эта вероятность может быть представлена колоколообразной кривой (рис. 9).

 

 

Рис. 8. Наложение многих простых волн образует типичный локальный волновой пакет (Из книги П. У. Аткинса «Кванты: справочник понятий», Оксфорд: Клейрдон Пресс, 1974)

 

Рис. 9. Типичное распределение вероятности

 

 

Последнее изменение этой страницы: 2016-06-10

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...