Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Радиолокационный управление воздушный движение

СОДЕРЖАНИЕ

 

Введение

1. Теоретическая часть

1.1. Общая характеристика РЛС УВД

1.2. Задачи и основные параметры РЛС

1.3. Особенности первичных РЛС

1.4. Трассовая обзорная РЛС «Скала - М»

1.5. Особенности функциональных узлов РЛС «Скала - М»

1.6. Патентный поиск

2. Безопасность и экологичность проекта

2.1. Безопасная организация рабочего места инженера ПЭВМ

2.2. Потенциально опасные и вредоносные производственные факторы при работе с ПЭВМ

2.3. Обеспечение электробезопасности при работе с ПЭВМ

2.4 Электростатические заряды и их опасность

2.5. Обеспечение электромагнитной безопасности

2.6. Требования к помещениям для эксплуатации ПЭВМ

2.7. Микроклиматические условия

2.8. Требования к шуму и вибрации

2.9. . Требования к организации и оборудованию рабочих мест с мониторами и ПЭВМ

2.10. Расчет освещенности

2.11. Экологичность проекта

Заключение

Библиографический список

 


ВВЕДЕНИЕ

Радиолокационные станции системы управления воздушным движением (УВД) являются основным средством сбора информации о воздушной обстановке для диспетчерского состава службы движения и средством контроля за ходом выполнения плана полетов, а также служат для выдачи дополнительной информации по наблюдаемым воздушным судам и обстановке на взлетно-посадочной полосе и рулежных дорожках. В отдельную группу могут быть выделены метеорологические РЛС, предназначенные для оперативного снабжения командного, летного и диспетчерского состава данными о метеорологической обстановке.

В нормах и рекомендациях ИКАО, Постоянной комиссии по радиотехнической и электронной промышленности СЭВ предусмотрено разделение радиолокационных средств на первичные и вторичные. Часто первичные радиолокационные станции (ПРЛС) и ВРЛС объединяют по принципу функционального использования и определяют как радиолокационный комплекс (РЛК). Однако характер получаемой информации, особенно построения аппаратуры, позволяет рассматривать данные станции отдельно.

Исходя из сказанного РЛС целесообразно объединить в следующие трастовые обзорные радиолокаторы ОРЛ-Т с максимальной дальностью действия около 400 км;

трассовые и аэроузловые радиолокаторы ОРЛ-ТА с максимальной дальностью действия порядка 250 км;

аэродромные обзорные радиолокаторы ОРЛ-А (варианты В1, В2, ВЗ) с максимальной дальностью действия 150, 80 и 46 км соответственно;

посадочные радиолокаторы (ПРЛ);

вторичные радиолокаторы (ВРЛ);

комбинированные обзорно-посадочные радиолокаторы (ОПРЛ);

радиолокаторы обзора летного поля (ОЛП);

метеорологические радиолокаторы (МРЛ).

В данной курсовой работе рассматривается принцип построения РЛС управления воздушным движением.


Теоретическая часть

Общая характеристика РЛС УВД

Задачи и основные параметры РЛС

Назначение РЛС - обнаружение и определение координат воздушных судов (ВС) в зоне ответственности радиолокатора. Первичные радиолокационные станции позволяют обнаружить и измерить наклонную дальность и азимут ВС методом активной радиолокации, используя отраженные от целей зондирующие сигналы радиолокатора. Они работают в импульсном режиме с высокой (100 ... 1000) скважностью. Круговой обзор контролируемого воздушного пространства осуществляется с помощью вращающейся антенны, обладающей остронаправленной ДНА в горизонтальной плоскости.

В табл. 1 приведены основные характеристики обзорных РЛС и их численные значения, регламентированные нормами СЭВ—ИКАО.

Рассматриваемые РЛС имеют значительное число общих черт и зачастую выполняют аналогичные операции. Им присуща идентичность структурных схем. Основные их отличия обусловлены различными особенностями функционального использования в иерархически сложной системе УВД.


 

Особенности первичных РЛС

Типовая структурная схема первичной РЛС (рис. 1) состоит из следующих основных узлов: антенно-фидерной системы (АФС) с механизмом привода (МПА); датчика угловых положений (ДУА) и канала подавления боковых лепестков (КП); передатчика (Прд) с устройством автоматической подстройки частоты (АПЧ); приемника (Прм); аппаратуры выделения и обработки сигналов (АВОС) - в ряде современных и перспективных радиолокационных станций и комплексов, объединяемых с приемником в процессор обработки сигналов; синхронизирующего устройства (СУ), тракта трансляции сигналов к внешним устройствам обработки и отображения (ТС); контрольного индицирующего устройства (КМ), обычно работающего в режиме «Аналог» или «Синтетика»; системы встроенного контроля (ВСК).

 

Основная антенна, входящая в состав АФС, предназначена для формирования ДНА, имеющей в вертикальной плоскости ширину 30 ... 40º, а в горизонтальной плоскости ширину 1 ...2°. Малая ширина ДНА в горизонтальной плоскости обеспечивает необходимый уровень разрешающей способности по азимуту. Для уменьшения влияния дальности обнаружения ВС на уровень отражения от цели сигналов ДНА в вертикальной плоскости часто имеет форму, подчиняющуюся закону Cosec2 θ, где θ - угол места.

Канал подавления боковых лепестков ДН запросной антенны (при работе РЛС в активном режиме, т. е. при использовании встроенного или параллельно работающего ВРЛ) предназначен для уменьшений вероятностей ложных срабатываний самолетного ответчика. Конструктивно более проста система подавления боковых лепестков по ответу.

В большинстве РЛС в АФС используются два облучателя, один из которых обеспечивает обнаружение ВС на малых высотах, т. е. под малыми углами места. Особенностью ДН в вертикальной плоскости является градация ее конфигурации, особенно в нижней части, чем достигается уменьшение помех от местных предметов и подстилающей поверхности. С целью повышения гибкости юстирования РЛС предусмотрена возможность изменения максимума ДНА по углу 9 в пределах 0 ... 5º относительно горизонтальной плоскости. В состав АФС входят устройства, позволяющие изменять поляризационные характеристики излучаемых и принимаемых сигналов. Так, например, применение круговой поляризации позволяет ослабить на 15 ... 22 дБ сигналы, отраженные от метеообразований.

Отражатель антенны, выполненный из металлической сети, по форме близок к усеченному параболоиду вращения. В современных РЛС УВД используются также радиопрозрачные покрытия, защищающие АФС от осадков и ветровой нагрузки. На отражателе антенны монтируют антенны ВРЛ и антенну канала подавления.

Механизм привода антенны обеспечивает ее равномерное вращение. Частота вращения антенны определяется требованиями информационного обеспечения диспетчеров службы движения, ответственных за различные этапы полета. Как правило, предусмотрены варианты секторного и кругового обзора пространства.

Определение азимута ВС осуществляется с помощью считывания информации в системе координат, заданных для индицирующего устройства РЛС. Датчики угловых положений антенны предназначены для получения дискретных или аналоговых сигналов, являющихся базовыми для выбранной системы координат.

Передатчик предназначен для получения радиоимпульсов длительностью 1 ... 3 мкс. Частотный диапазон работы выбирается исходя из назначения РЛС. С целью снижения потерь, вызванных флуктуациями цели, увеличения числа импульсов, отраженных от цели за один обзор, а также с целью борьбы со слепыми скоростями применяют двухчастотное зондирование пространства. При этом рабочие частоты отличаются на 50...100 МГц.

Временные характеристики зондирующих импульсов зависят от функционального использования РЛС. В ОРЛ-Т используются зондирующие импульсы с длительностью порядка 3 икс, следующие с частотой повторений 300 ... 400 Гц, а ОРЛ-А имеют длительность импульса не более 1 мкс при частоте повторения 1 кГц. Мощность передатчика не превосходит 5МВт.

Для обеспечения заданной точности частоты генерируемых колебаний СВЧ, а также для нормальной работы схемы СДЦ используется устройство автоматической подстройки частоты (АПЧ). В качестве источника опорных колебаний в устройствах АПЧ используют стабильный местный гетеродин приемника. Скорость авто подстройки достигает единиц мегагерц на секунду, что позволяет снизить влияние АПЧ на эффективность работы системы СДЦ. Значение остаточной расстройки реальной величины частоты по отношению к номинальному значению не превосходит 0,1 ... 0,2 МГц.

Обработка сигналов по заданному алгоритму осуществляется в приемно-анализирующем устройстве РЛС в случае, когда Прм и АВОС практически неразличимы.

В общем случае приемник выполняет функции выделения, усиления и преобразования принимаемых эхо-сигналов. Особенностью приемников РЛС является наличие малошумящего усилителя высокой частоты, позволяющего снизить коэффициент шума приемника и тем самым увеличить дальность обнаружения цели. Среднее значение коэффициента шума приемников лежит в пределах 2 ... 4 дБ, а чувствительность составляет 140 дБ/Вт. Промежуточная частота обычно равна 30 МГц, двойное преобразование частоты в РЛС УВД практически не используется, коэффициент усиления УПЧ около 20 ... 25 дБ. В некоторых РЛС с целью расширения динамического диапазона входных сигналов используют усилители с ЛАХ.

В свою очередь для сужения диапазона входных сигналов, поступающих на АПОИ, используют АРУ, а также ВАРУ, повышающую коэффициент усиления УПЧ при работе на предельных дальностях обнаружения.

С выхода УПЧ сигналы идут по каналам амплитудного и фазового

детектирования.

Аппаратура временной обработки сигнала (АВОС) выполняет функцию фильтрации полезного сигнала на фоне помех. Наибольшей интенсивностью обладают непреднамеренные помехи от радиотехнических средств, расположенных в радиусе до 45 км от РЛС.

Аппаратурные средства борьбы с электромагнитными помехами включают специальные устройства коммутации и управления ДН, схемы ВАРУ, уменьшающие динамический диапазон входных сигналов от близкорасположенных целей, устройства бланкирования приемо-анализирующего тракта, фильтры синхронных и несинхронных помех и др.

Эффективным средством борьбы с помехами от неподвижных или слабо меняющих свое положение в пространстве и времени целей являются системы селекции движущихся целей (СДЦ), реализующие методы одно - или двукратной череспериодной компенсации. В ряде современных РЛС устройство селекции движущихся целей (СДЦ) реализует алгоритм цифровой обработки в квадратурных каналах, имея коэффициент подавления помех от неподвижных объектов 40 ... 43 дБ, а от метеопомех до 23 дБ.

Выходными устройствами АВОС являются параметрические и непараметрические обнаружители сигналов, позволяющие стабилизировать вероятность ложной тревоги на уровне 10-6.

При цифровой обработке сигналов АВОС представляет собой специализированный микропроцессор.

 

Патентный поиск

 

Рассмотренная выше РЛС третьего поколения появилась в 80-х годах. В мире существует большое количество подобных комплексов. Рассмотрим несколько запатентованных устройств УВД и их характеристики.

В США в 1994 году появились несколько патентов различные РЛС УВД.

 

1. G01S9/56

342-37

920616 Том 1139 №3

 

Способ и устройство для системы воспроизведения информации наземной РЛС.

Система управления воздушным движением /УВД/ содержит РЛС обнаружения, радиомаяк и общий цифровой кодер для сопровождения самолетов и устранения возможности столкновений. В процессе передачи данных на систему УВД производится сбор данных, поступающих с общего цифрового кодера, при этом для всех сопровождаемых самолетов собираются данные о дальности и азимуте. Из общего массива данных отфильтровываются данные, не относящиеся к местонахождению сопровождаемых самолетов. В результате формируется сообщение о траектории с полярными координатами. Полярные координаты преобразуются в прямоугольные, после чего формируется и кодируется блок данных, несущий информацию о всех самолетах, сопровождаемых системой УВД. Блок данных формируется вспомогательным компьютером. Блок данных считывается во временное ЗУ и передается на приемную станцию. На приемной станции принятый блок данных декодируется и воспроизводится в виде, приемлемом для восприятия человеком.

Переводчик И.М.Леоненко Редактор О.В.Иванова

2. G01S13/56,13/72

342-52

920728 Том 1140 №4

 

Требования к помещениям для эксплуатации ПЭВМ.

Помещение с мониторами и ПЭВМ должны иметь естественное и искусственное освещение. Естественное освещение должно осуществляться через светопроемы, ориентированные преимущественно на север и северо - восток обеспечивать коэффициент естественного освещения (КЕО) не ниже 1,2 % в зонах с устойчивым снежным покровом и не ниже 1,5 % на остальной территории. Указанные значения КЕО нормируются для зданий, расположенных в III световом климатическом поясе.

Площадь на одно рабочее место с ВДТ или ПЭВМ для взрослых пользователей должна составлять не менее 6,0 кв. м., а объем не менее 20,0 куб. м.

Для внутренней отделки интерьера помещений с мониторами и ПЭВМ должны использоваться диффузно - отражающиеся материалы с коэффициентом отражения для потолка - 0,7 - 0,8; для стен - 0,5 - 0,6; для пола - 0,3 - 0,5.

Поверхность пола в помещениях эксплуатации мониторов и ПЭВМ должна быть ровной, без выбоин, нескользкой, удобной для очистки и для влажной уборки, обладать антистатическими свойствами.


Микроклиматические условия

 

Одним необходимых условий комфортной деятельности человека является обеспечение в рабочей зоне благоприятного микроклимата, который определяется температурой, влажностью, атмосферным давлением, интенсивностью излучения нагретых поверхностей. Микроклимат оказывает существенное влияние на функциональную деятельность человека, его здоровье.

В помещениях с ПЭВМ необходимо соблюдать оптимальные микроклиматические условия. Они обеспечивают общее и локальное ощущение теплового комфорта в течение 8-ми часового рабочего дня при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности.

Согласно СанПин 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений» оптимальные микроклиматические условия для помещения в теплый период года:

- относительная влажность 40-60%;

- температура воздуха 23-25 °С;

- скорость движения воздуха до 0,1 м/с.

Оптимальные нормы достигаются при использовании вентиляционных систем.

 

Требования к шуму и вибрации

При выполнении основной работы на мониторах и ПЭВМ (диспетчерские, операторские, расчетные, кабины и посты управления, залы вычислительной техники и др.) где работают инженерно - технические работники, осуществляющие лабораторный, аналитический или измерительный контроль, уровень шума не должен превышать 60 дБА.

В помещениях операторов ЭВМ (без дисплеев) уровень шума не должен превышать 65 дБА.

На рабочих местах в помещениях для размещения шумных агрегатов вычислительных машин (АЦПУ, принтеры и др.) уровень шума не должен превышать 75 дБА.

Шумящее оборудование (АЦПУ, принтеры и др.), уровни шума которого превышают нормированные, должно находится вне помещения с монитором и ПЭВМ.

Снизить уровень шума в помещениях с мониторами и ПЭВМ можно использованием звукопоглощающих материалов с максимальными коэффициентами звукопоглощения в области частот 63 - 8000 Гц для отделки помещений (разрешенных органами и учреждениями Госсанэпиднадзора России), подтвержденных специальными акустическими расчетами.

Дополнительным звукопоглощением служат однотонные занавеси из плотной ткани, гармонирующие с окраской стен и подвешенные в складку на расстоянии 15 - 20 см от ограждения. Ширина занавеси должна быть в 2 раза больше ширины окна.

 

Требования к организации и оборудованию рабочих мест с мониторами и ПЭВМ

Рабочие места с ВДТ и ПЭВМ по отношению к световым проектам должны располагаться так, чтобы естественный свет падал сбоку, преимущественно слева.

Схемы размещения рабочих мест с ВДТ и ПЭВМ должны учитывать расстояния между рабочими столами с видеомониторами (в направлении тыла поверхности одного видеомонитора и экрана другого видеомонитора), которое должно быть не мене 2,0 м, а расстояние между боковыми поверхностями видеомониторов - не менее 1,2 м.

Оконные проемы в помещениях использования ВДТ и ПЭВМ должны быть оборудованы регулируемыми устройствами типа: жалюзи, занавесей, внешних козырьков и др.

Экран видеомонитора должен находиться на расстоянии 600 - 700 мм, но не ближе 500 мм с учетом алфавитно - цифровых знаков и символов.

Помещения с ВДТ и ПЭВМ должны быть оснащены аптечкой первой помощи и углекислотными огнетушителями.

Схема расположения рабочих мест относительно светопроемов.

(Параметры для соблюдения рекомендуются).

 

 

Рис.1 Схема размещения светильников

 

Экологичность проекта

 

ПК не представляет опасности для окружающей среды. Дозы излучения, создаваемые ПК, малы по сравнению с излучениями других источников.

При работе вычислительной техники загрязнения окружающей среды не происходит, следовательно, специальных мероприятий по обеспечению экологичности не требуется.

На основании выявленных опасных и вредных факторов, а также рассмотренных методах борьбы с ними можно сделать заключение, что рассматриваемый проект не нарушает экологическое равновесие в окружающем его пространстве и может быть использован без каких-либо доработок и изменений.


Заключение

В настоящее время радиолокационные станции нашли широчайшее применение во многих сферах деятельности человека. Современная техника позволяет с большой точностью измерять координаты положения целей, следить за их движением, определять не только формы объектов, но и структуру их поверхности. Хотя радиолокационная техника разрабатывалась и развивалась в первую очередь для военных целей, ее преимущества позволили найти многочисленные важные применения радиолокации и в гражданских областях науки и техники; наиболее важным примером может служить управление воздушным движением.

С помощью РЛС в процессе УВД решаются задачи:

· Обнаружения и определения координат воздушных судов

· Контроля выдерживания экипажами воздушных судов линий заданного пути, заданных коридоров и времени прохождения контрольных точек, а также предупреждение опасных сближений воздушных судов

· Оценки метеообстановки по маршруту полета

· Коррекции местоположения воздушных судов, передачи на борт информации и указаний для вывода в заданную точку пространства.

В современных РЛС УВД используются самые последние достижения науки и техники. Элементной базой РЛС являются интегральные микросхемы. В них широко используются элементы вычислительной техники и, в частности, микропроцессоры, которые служат основой технической реализации адаптивных систем обработки радиолокационных сигналов.

Кроме того, к другим особенностям данных РЛС можно отнести:

· Применение цифровой системы СДЦ с двумя квадратурными каналами и двойным или тройным вычитанием, обеспечивающей коэффициент подавления помех от местных предметов до 40..45 дБ и коэффициент подпомеховой видимости до 28..32 дБ;

· Применение переменного периода повторения зондирующего сигнала для борьбы с помехами от целей, удаленных от РЛС на расстоянии превышающее максимальную дальность действия радиолокатора, и для борьбы со “слепыми” скоростями;

· Обеспечение линейной амплитудной характеристики приемного тракта до входа системы СДЦ с динамическим диапазоном по входному сигналу до 90..110 дБ и динамическим диапазоном системы СДЦ, равным 40 дБ;

· Повышение фазовой стабильности генераторных приборов приемника и передатчика РЛС и применение истинно когерентного принципа построения РЛС;

· Применение автоматического управления положением нижней кромки зоны обзора РЛС в вертикальной плоскости благодаря использованию двулучевой диаграммы направленности антенны и формированию взвешенной суммы сигналов верхнего и нижнего лучей.

Развитие РЛС УВД характеризуется прежде всего тенденцией непрерывного повышения помехозащищенности РЛС с учетов возможных изменений помеховой обстановки. Повышение точности РЛС обеспечивается в основном благодаря применению более совершенных алгоритмов обработки информации. Повышение надежности РЛС достигается благодаря широкому использованию интегральных микросхем и значительному повышению надежности механических узлов (антенны, опорно-поворотного устройства и вращающегося перехода), а также за счет применения аппаратуры встроенного автоматического контроля параметров РЛС.


Библиографический список

1. Бакулев П.А. Радиолокационные системы. - М.,: Радиотехника, 2004 г.

2. Радзиевский В.Г., Сирота А.А. Теоретические основы радиоэлектронной разведки. - М.,: Радиотехника, 2004 г.

3. Перунов Ю.М., Фомичев К.И., Юдин Л.М. Радиоэлектронное подавление информационных каналов систем управления оружием. – М.: Радиотехника, 2003 г.

4. Кошелев В.И. Теоретические основы радиоэлектронной борьбы. – Конспект лекций.

5. Основы системного проектирования радиолокационных систем и устройств: Методические указания по курсовому проектированию по дисциплине «Основы теории радиотехнических систем» / Рязан. гос. радиотехн. акад.; Сост.: В.И. Кошелев, В.А. Федоров, Н.Д. Шестаков. Рязань, 1995. 60 с.

Размещено на /

СОДЕРЖАНИЕ

 

Введение

1. Теоретическая часть

1.1. Общая характеристика РЛС УВД

1.2. Задачи и основные параметры РЛС

1.3. Особенности первичных РЛС

1.4. Трассовая обзорная РЛС «Скала - М»

1.5. Особенности функциональных узлов РЛС «Скала - М»

1.6. Патентный поиск

2. Безопасность и экологичность проекта

2.1. Безопасная организация рабочего места инженера ПЭВМ

2.2. Потенциально опасные и вредоносные производственные факторы при работе с ПЭВМ

2.3. Обеспечение электробезопасности при работе с ПЭВМ

2.4 Электростатические заряды и их опасность

2.5. Обеспечение электромагнитной безопасности

2.6. Требования к помещениям для эксплуатации ПЭВМ

2.7. Микроклиматические условия

2.8. Требования к шуму и вибрации

2.9. . Требования к организации и оборудованию рабочих мест с мониторами и ПЭВМ

2.10. Расчет освещенности

2.11. Экологичность проекта

Заключение

Библиографический список

 


ВВЕДЕНИЕ

Радиолокационные станции системы управления воздушным движением (УВД) являются основным средством сбора информации о воздушной обстановке для диспетчерского состава службы движения и средством контроля за ходом выполнения плана полетов, а также служат для выдачи дополнительной информации по наблюдаемым воздушным судам и обстановке на взлетно-посадочной полосе и рулежных дорожках. В отдельную группу могут быть выделены метеорологические РЛС, предназначенные для оперативного снабжения командного, летного и диспетчерского состава данными о метеорологической обстановке.

В нормах и рекомендациях ИКАО, Постоянной комиссии по радиотехнической и электронной промышленности СЭВ предусмотрено разделение радиолокационных средств на первичные и вторичные. Часто первичные радиолокационные станции (ПРЛС) и ВРЛС объединяют по принципу функционального использования и определяют как радиолокационный комплекс (РЛК). Однако характер получаемой информации, особенно построения аппаратуры, позволяет рассматривать данные станции отдельно.

Исходя из сказанного РЛС целесообразно объединить в следующие трастовые обзорные радиолокаторы ОРЛ-Т с максимальной дальностью действия около 400 км;

трассовые и аэроузловые радиолокаторы ОРЛ-ТА с максимальной дальностью действия порядка 250 км;

аэродромные обзорные радиолокаторы ОРЛ-А (варианты В1, В2, ВЗ) с максимальной дальностью действия 150, 80 и 46 км соответственно;

посадочные радиолокаторы (ПРЛ);

вторичные радиолокаторы (ВРЛ);

комбинированные обзорно-посадочные радиолокаторы (ОПРЛ);

радиолокаторы обзора летного поля (ОЛП);

метеорологические радиолокаторы (МРЛ).

В данной курсовой работе рассматривается принцип построения РЛС управления воздушным движением.


Теоретическая часть

Общая характеристика РЛС УВД

радиолокационный управление воздушный движение

В современных авторизированных системах (АС) управления воздушного движения (УВД) применяются РЛС третьего поколения. Переоснащение предприятий гражданской авиации занимает обычно длительный период, поэтому в настоящее время наряду с современными РЛС применяются РЛС второго и даже первого поколений. РЛС различных поколений отличаются, прежде всего, элементной базой, способами обработки радиолокационных сигналов и защиты РЛС от помех.

РЛС первого поколения начали широко применятся с середины 60-х годов. К ним относятся трассовые РЛС типа П-35 и аэродромные РЛС типа “Экран”. Эти радиолокаторы построены на электровакуумных приборах с применением навесных элементов и объемного монтажа.

РЛС второго поколения начали применяться в конце 60-х - начале 70-х годов. Повышение требований к источникам радиолокационной информации системы УВД привело к тому, что радиолокаторы этого поколения превратились в сложные многорежимные и многоканальные радиолокационные комплексы (РЛК). Радиолокационный комплекс второго поколения состоит из РЛС со встроенным радиолокационным каналом и аппаратуры первичной обработки информации (АПОИ). Ко второму поколению относятся трастовые РЛК «Скала» и аэродромные РЛК «Иртыш». В этих комплексах наряду с электровакуумными приборами начали широко применяться твердотельные элементы, модули и микромодули в сочетании с монтажом на основе печатных плит. Основной схемой построения первичного канала РЛК стала двухканальная схема с разносом частот, которая позволила повысить показатели надежности и улучшить характеристики обнаружения по сравнению с РЛС первого поколения. В РЛС второго поколения начали применяться более совершенные средства защиты от помех.

Опыт эксплуатации РЛС и РЛК второго поколения показал, что в целом они недостаточно полно удовлетворяют требованиям АС УВД. В частности, к их существенным недостаткам относятся ограниченное применение в аппаратуре современных средств цифровое обработки сигналов, малый динамический диапазон приемного тракта и др. Данные РЛС и РЛК используются в настоящее время в неавтоматизированных и автоматизированных системах УВД.

Первичные РЛС и РЛК третьего поколения начали использоваться в гражданской авиации нашей страны как основные источники радиолокационной информации АС УВД с 1979 г. Главное требование, которое определяет особенности РЛС и РЛК третьего поколения, - обеспечение стабильного уровня ложных тревог на выходе РЛС. Это требование выполняется благодаря адаптивным свойствам первичных РЛС третьего поколения. В адаптивных РЛС осуществляются анализ в реальном масштабе времени помеховой обстановки и автоматическое управление режимом работы РЛС. С этой целью вся зона обзора РЛС разбивается на ячейки, для каждой из которых в результате анализа за один или несколько периодов обзора принимается отдельное решение о текущем уровне помех. Адаптация РЛС к изменениям помеховой обстановки обеспечивает стабилизацию уровня ложных тревог и уменьшает опасность перегрузки АПОИ и аппаратуры передачи данных в центр УВД.

Элементной базой РЛС и РЛК третьего поколения являются интегральные микросхемы. В современных РЛС начинают широко применятся элементы вычислительной техники и, в частности, микропроцессоры, которые служат основой технической реализации адаптивных систем обработки радиолокационных сигналов.


Последнее изменение этой страницы: 2016-06-10

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...