Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Шпоночные и шлицевые соединения

Шпоночное соединение образуется шпонкой-стержнем, находящимся одновременно в пазах вала и установленной на него детали. Шпонки служат для передачи крутящего момента от вала к ступице, установленной не нем детали или наоборот, от этой детали к валу. Кроме этого шпонки фиксируют на валу положение детали в осевом направлении.

По условиям эксплуатации шпоночные соединения подразделяются на напряженные и ненапряженные. Напряженными называют соединения, в которых при отсутствии внешних сил и моментов постоянно действуют внутренние силы упругости, возникающие в результате предварительной затяжки. Наиболее распространены призматические, сегментные и клиновые шпонки.

Призматические шпонки имеют прямоугольное сечение, противоположные грани у них параллельны, передают крутящий момент боковыми гранями и бывают простыми, направляющими и скользящими. Простые шпонки устанавливают в паз вала без крепления; направляющие шпонки крепят к валу винтами в целях устранения перекоса; скользящие шпонки выполняются короткими и они перемещаются по валу вместе с деталью.

Сегментная шпонка подобно призматическим работают боковыми гранями, мало подвержена перекосу, так как шпоночный паз выполняют фрезой; однако паз под такую шпонку имеет значительную глубину и ослабляет сечение вала. При необходимости по длине вала могут устанавливаться две, а иногда и три шпонки. К преимуществам сегментных шпонок относятся простота изготовления как самих шпонок, так и пазов под них, к недостаткам - необходимость изготовления глубоких пазов в валах, что снижает прочность последних. В связи с этим сегментные шпонки применяют только для передачи сравнительно небольших моментов.

Клиновые шпонки в совокупности с валом, втулкой и шпонкой образуют напряженное соединение. Они представляют собой клин с уклоном 1 : 100, передают крутящий момент, а также осевую силу верхней и нижней гранями (по бокам имеется зазор). Шпонки плохо центрируют деталь и поэтому применяются только для тихоходных неответственных передач.

Направляющие шпонки применяют в тех случаях, когда ступица должна иметь возможность перемещаться вдоль вала. Эти шпонки крепят к валу при помощи винтов. Соединение шпонки с валом – неподвижное плотное, со ступицей – свободное с зазором.

Скользящие шпонки применяют вместо направляющих в тех случаях, когда требуется значительное перемещение ступицы вдоль вала. Шпонка имеет цапфу, которая входит в отверстие, выполненное в ступице, перемещаемой по валу. При изменении положения детали по валу шпонка перемещается по пазу вала вместе со ступицей.

Многошпоночные соединения, у которых шпонки выполнены заодно с валом, называются шлицевыми.

Рис 1.17 Виды шлицевых соединений:

1 – ступица, 2 - вал

По сравнению со шпоночным соединением шлицевые соединения обладают рядом преимуществ:

- обеспечивает лучшее центрирование и направление при перемещении соединяемых деталей;

- обеспечивают большую прочность вала при одном и том же наружном диаметре;

- обеспечивают передачу больших крутящих моментов благодаря значительной поверхности контакта соединяемых деталей и равномерному распределению давления по этой поверхности.

Применяют соединения с прямобочным, эвольвентным и треугольным профилем шлицев, число шлицев принимают четным (6,8 и 10).

Прямобочные шлицевые соединения получили наибольшее распространение. Соосность вала и втулки (центрирование) в этом соединении осуществляется по наружному диаметру, по внутреннему диаметру и по боковым граням.

Эвольвентное шлицевое соединение применяют с центрированием по боковым поверхностям шлицев и наружному диаметру. Поперечное сечение шлицев представляет собой эвольвентный профиль, под действием нагрузки могут самоустанавливаться, имеют повышенную прочность и долговечность и используются в высоконагруженных передачах.

Треугольное шлицевое соединение применяют для передачи небольших крутящих моментов в неподвижных соединениях, его центрируют только по боковым поверхностям шлицев.

При сборке шпоночных и шлицевых соединений, выполняемых с натягом, ступицу перед установкой на вал нагревают до температуры 80 - 120оС, а после установки проверяют на биение.

 

Рис 1.18 Виды шпоночных соединений:

1 – шпонка, 2 – вал, 3 – ступица

 

Для извлечения шпонок при разборке соединений используют мягкие выколотки. Для разборки клиновых шпоночных соединений применяют винтовые приспособления.

 

3.3. Соединение методом пластической деформации (вальцевание).

 

Вальцевание применяют в основном для соединения труб с корпусными деталями. Процесс заключается в расширении конца трубы, вставленной в отверстие корпусной детали, специальным инструментом – вальцовкой.

Основной рабочей частью вальцовки являются стальные закаленные полированные шарики или ролики. Под воздействием инструмента – вальцовки в металле трубы происходят пластические деформации, в результате которых ее диаметр увеличивается и труба закрепляется в отверстии, при этом деформируется только труба. Вальцевание применяют в тех случаях, когда нагрев соединяемых деталей нежелателен или при сборке деталей из разнородных материалов. Вальцеванием получают плотные и герметичные соединения, передающие осевую нагрузку и крутящий момент. Прочность соединения значительно увеличивается, если концу трубы придают коническую форму.

 

Клепка

Клепкойназывают метод получения неразъемного неподвижного соединения с помощью заклепок. Клепаные соединения надежно работают в условиях вибрации и ударных нагрузок, при высоких и низких температурах и давлениях, обеспечивая герметичность соединения.

Заклепку из пластичного материала (углеродистая и легированная сталь, медь, латунь, алюминий и др.) устанавливают в совмещенные отверстия соединяемых деталей. Под действием приложенных сил стержень заклепки деформируется и образуется замыкающая головка заклепки, которая стягивает соединяемые детали. В стыке соединяемых деталей возникают силы трения, которые воспринимают внешнюю нагрузку.

Клепаные соединения делят на свободные и прочные. В свободном соединении заклепка исполняет роль оси вращения (например, у циркуля, угломера). Прочные соединения выполняют внахлестку, с одной или двумя накладками.

В качестве инструмента при ручной клепке используют молотки, поддержки, обжимки, натяжки. Обжимка представляет собой цилиндрический стержень из стали У8, имеющий на одном конце углубление для образования замыкающей головки заклепки. Натяжка осаживает склепываемые детали вокруг заклепки перед ее расклепыванием и представляет собой цилиндрический стержень, на одном конце которого выполнено глухое отверстие, диаметр которого больше диаметра стержня заклепки на 0,3 мм.

Ударную клепку выполняют в следующей последовательности: в совмещенные отверстия соединяемых деталей вставляют заклепку, ударами молотка по натяжке детали плотно прижимают друг к другу; затем осаживают стержень заклепки до полного заполнения им всего пространства отверстия; далее с помощью обжимки образуют замыкающую головку. В процессе клепки закладная головка все время находится на поддержке.

Стальные (диаметром до 8 мм), а также медные, латунные, алюминиевые заклепки можно расклепывать в холодном состоянии.

При горячем процессе стальные заклепки нагревают до температуры 1050 - 1100оС.

Сварка

 

Сваркойназывается образование неразъемных соединений посредством установления межатомных связей между материалами свариваемых деталей путем их совместного нагрева. Сварка основана на образовании прочных связей между атомами материалов соединяемых деталей. Затвердевший после сварки металл, соединяющий свариваемые детали, называют сварным швом. Сварные соединения характеризуются малой трудоемкостью и относительно малой стоимостью. Прочность сварного шва не уступает прочности материалов свариваемых деталей.

В зависимости от взаимного расположения соединяемых деталей различают стыковые, нахлесточные, с накладками, угловые и тавровые сварные швы.

По виду энергии, используемой для образования сварного соединения, сварка бывает термическая (дуговая, плазменная, лазерная, газовая и др.); термомеханическая (контактная, диффузионная); и механическая (ультразвуковая, сварка взрывом, трением и др.). В слесарном деле наибольшее применение находят дуговая и газовая сварки.

При ручной дуговой сварке между электродом и соединяемыми деталями возникает электрическая дуга. Расплавленный металл электрода заполняет металлическую ванну. Одновременно плавится и покрытие электрода, образуя газовую защитную атмосферу, и жидкую шлаковую ванну на поверхности металлической ванны, изолируя жидкий металл от кислорода воздуха. Жидкий металл и шлак застывают и образуют сварной шов.

При газовой сварке жидкая металлическая ванна образуется в результате плавления кромок свариваемых деталей и присадочного материала в высокотемпературном пламени газовой горелки. В результате сварки образуются общие для свариваемых материалов кристаллические решетки.

Источниками тока для питания сварочной дуги служат сварочные трансформаторы (источники переменного тока), сварочные выпрямители и генераторы (источники постоянного тока). Сварочные трансформаторы более долговечны, проще и надежнее в эксплуатации, имеют более высокий коэффициент полезного действия (к.п.д). Источники постоянного тока обеспечивают более устойчивую дугу, позволяют создавать лучшие условия сварки в различных пространственных положениях.

Газовую сварку выполняют с помощи горелок. В качестве горючих газов применяют кислород, ацетилен, природные газы, водород, пары бензина и керосина.

Электроды для ручной сварки представляют собой стержни с покрытиями, из углеродистой, легированной и высоколегированной стали. Покрытия электродов состоят из газообразующих, шлакообразующих, раскисляющих, легирующих и связывающих компонентов. Покрытия стабилизируют дугу, защищают расплавленный металл от воздействия воздуха и обеспечивают материалу шва необходимые состав и свойства.

Для газовой сварки применяют присадочную проволоку, материал, которого выбирают исходя из свойств свариваемого материала.

При ручной дуговой сварке деталей толщиной до 5 - 8 мм их кромки не скашивают. Для более толстых деталей скашивание кромок является обязательным, так как это позволяет проплавить металл на всю его толщину.

 

Последнее изменение этой страницы: 2016-06-10

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...