Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Загальна характеристика рідини.

Рідина - конденсований агрегатний стан речовини, проміжний між твердим та газоподібним. Фізичне тіло, якому притаманні:

· плинність, на відміну від твердого тіла;

· достатньо мала зміна об’єму (при зміні тиску й температури), на відміну від газу.

Збереження об’єму, густина, показник заломлення, теплота плавлення, в’язкість — властивості, які зближують рідини з твердими тілами, а незбереження форми – з газами.

Для рідин характерний ближній порядок розташування молекул (відносна впорядкованість у розташуванні молекул найближчого оточення довільної молекули, подібна до порядку в кристалічних тілах, але на відстані кількох атомних діаметрів ця впорядкованість порушується). Взаємодія між молекулами рідини здійснюється Ван дер Ваальсовими і водневими зв’язками. Рідини, крім розсолів та зріджених металів, - погані провідники електричного струму.

Плинність рідин пов’язана з періодичним «перестрибуванням» їхніх молекул з одного рівноважного положення в інше. Більшу частину часу окрема молекула рідини перебуває в тимчасовій асоціації з сусідніми молекулами (ближня впорядкованість), де вона здійснює теплові коливання.

Інколи рідиною в широкому розумінні слова називають і газ, при цьому рідину у вузькому змісті слова, яка задовольняє попереднім двом умовам, називають крапельною рідиною.

У газів і крапельних рідин плинність проявляється вже при мінімальних напруженнях, тоді як у пластичних твердих тіл — лише при великих напруженнях, що перевищують границю текучості.

Форма, яку приймає рідина, визначається формою ємності, в якій вона перебуває. Частинки рідини (зазвичай молекули або групи молекул) можуть вільно переміщуватися по всьому її об'єму, але сила взаємного притягання не дозволяє частинкам залишати цей об'єм.

Об'єм рідини залежить від температури і тиску і є постійним за даних умов.

Якщо об'єм рідини менший за об'єм ємності, в якій вона міститься, то можна спостерігати поверхню рідини.

Поверхня має якості еластичної мембрани з поверхневим натягом, що дозволяє формуватися краплям та бульбашкам.

Ще одним наслідком дії поверхневого натягу є капілярність. Зазвичай рідини не піддаються стисканню, наприклад, щоб помітно стиснути воду, необхідний тиск порядку гігапаскаля.

Рідини в гравітаційному полі створюють тиск, як на стінки і дно ємності, так і на будь-які тіла всередині самої рідини. Цей тиск за законом Паскаля діє у всіх напрямках і зростає з глибиною.

Якщо рідина перебуває в стані спокою в однорідному гравітаційному полі, тиск на будь яку точку визначається барометричною формулою:

(1.1)

де:

· = густина рідини,

· = прискорення вільного падіння,

· = глибина точки (відстань між точкою та поверхнею рідини).

Згідно з цією формулою тиск на поверхні дорівнює нулю, тобто вважається, що посудина досить широка, й поверхневий натяг можна не враховувати.

Зазвичай рідини розширюються при нагріванні та стискаються при охолоджуванні. Вода між 0 та 4 °C становить один з небагатьох винятків. В цьому діапазоні температур вода при зниженні температури збільшується в об'ємі.

Рідина за температури кипіння перетворюється на газ, а за температури замерзання — на тверду речовину. Але навіть за температури, нижчій за температуру кипіння, рідина випаровується. Цей процес триває доти, доки не буде досягнуто рівноваги парціального тиску пари рідини та тиску на поверхні рідини. Саме через це жодна рідина не може існувати тривалий час у вакуумі.

Всі рідини можна розділити: на чисті рідини, що складаються з молекул однієї речовини, й суміші, які складаються з молекул різного сорту.

Різні рідкі компоненти суміші можна розділити за допомогою фракційної дистиляції. Не всі рідини утворюють однорідну суміш, якщо помістити їх в одну посудину. Часто рідини не змішуються, утворюючи поверхню між собою. В полі тяжіння одна рідина може плавати на поверхні іншої.

Здебільшого рідини — ізотропні речовини. Виняток складають рідкі кристали, які можна віднести до рідин з огляду на властивість перетікати й займати об'єм посудини, але в яких зберігаються властиві кристалічним тілам анізотропні властивості.

Класифікація рідин.

Структура та фізичні властивості рідини залежать від хімічної індивідуальності складових їх частинок та від характеру і величини взаємодії між ними. Можна виділити кілька груп рідин в порядку зростання складності.

1. Атомарні рідини або рідини з атомів або сферичних молекул, які пов'язані центральними міжмолекулярним силами (силами Ван дер Ваальса). До цього типу рідин належать, наприклад, рідкий аргон та рідкий метан.

2. Рідини з двоатомних молекул, які складаються з однакових атомів (рідкий водень, рідкий азот). Такі молекули мають квадрупольний момент.

3. Рідкі неперехідні метали (натрій, ртуть), в яких зв'язок між частинками (іонами) має металічний характер.

4. Рідини, що складаються з полярних молекул, пов'язаних диполь-дипольною взаємодією (рідкий бромистий водень).

5. Асоційовані рідини, або рідини з водневими зв'язками (вода, гліцерин).

6. Рідини, що складаються з великих молекул, для яких найважливішими є внутрішні ступені вільності.

Рідини перших двох груп (іноді трьох) зазвичай називають простими. Прості рідини вивчені краще від інших, з непростих рідин добре вивчена вода.

У цю класифікацію не входять квантові рідини і рідкі кристали, які є особливими випадками і повинні розглядатися окремо.

У рідині молекули здебільшого зберігають свою цілісність, хоча чимало рідин є розчинниками, в яких молекули до певної міри дисоціюють. При дисоціації в рідинах утворюються позитивно й негативно заряджені йони. Такі рідини проводять електричний струм .

З мікроскопічної точки зору рідини відрізняються від твердих тіл відсутністю далекого порядку, а від газів — ближнім порядком. Це означає, що атоми й молекули рідин здебільшого перебувають щодо своїх сусідів у тих же положеннях, що й у твердому стані, однак цей порядок зберігається для наступного шару сусідів гірше, а надалі зовсім зникає. Ближній порядок у рідинах характеризують радіальною кореляційною функцією.

В’язкість рідин.

Рідини характеризуються в'язкістю. Вона визначається як здатність чинити опір переміщенню однієї з частини рідини відносно іншої, тобто як внутрішнє тертя.

Коли сусідні шари рідини рухаються один відносно одного, неминуче відбувається зіткнення молекул додатково до того, яке обумовлене тепловим рухом. Виникають сили, що загальмовують впорядкований рух. При цьому кінетична енергія упорядкованого руху переходить в теплову — енергію хаотичного руху молекул.

У залежності від моделі в'язкості, яка покладена в основу розгляду в'язких характеристик рідин, вони поділяються на ньютонівські рідини (класична модель) і неньютонівські рідини.

В'я́зкість або внутрішнє тертя — властивість рідких речовин (рідин і газів) чинити опір переміщенню однієї їх частини відносно іншої. Одиниця вимірювання динамічного коефіцієнта в'язкості — Пуаз.

Природна в’язкість.

В’язкість рідин– це результат взаємодії внутрішньо молекулярних силових полів, що перешкоджають відносному рухові двох шарів рідини.

Отже для переміщення шару один відносно одного треба подолати їх взаємне притягання, причому чим воно більше, тим більша потрібна сила зсуву. При відносному зсуві шарів у газовому середовищі, в результаті перенесення молекулами газу кількості руху під час їх переходу з шару в шар, виникає дотична сила між шарами, що протидіє проковзуванню останніх.

Таким чином, внутрішнє тертя в рідині, на відміну від газів, зумовлене не обміном молекул, а їх взаємним притяганням. Доказом цього є те, що із збільшенням температури, як відомо, обмін молекул зростає і тертя в газах зростає, а в рідинах спадає у зв'язку із послабленням міжмолекулярного притягання.

В'язкість твердих тіл має низку специфічних особливостей і зазвичай розглядається окремо.

Загальна характеристика.

Згідно із законом Ньютона для внутрішнього тертя в'язкість характеризується коефіцієнтом пропорційності між напруженням зсуву і градієнтом швидкості руху шарів у перпендикулярному до деформації зсуву напрямку (поверхні шарів):

. (1.2)

Коефіцієнт називають динамічний коефіцієнт в’язкості або абсолютною в'язкістю. Одиниця вимірювання динамічного коефіцієнта в'язкості — Па c, Пуаз (0,1Па·с).

Кількісно динамічний коефіцієнт в'язкості дорівнює силі F, яку треба прикласти до одиниці площі зсувної поверхні шару S, щоб підтримати в цьому шарі ламінарну течію із сталою одиничною швидкістю відносного зсуву.

Типи в’язкості:

Закон Ньютона для в'язкості, наведений вище, є класичною моделлю в'язкості. Це не основний закон природи, а наближення, що має місце для деяких матеріалів і не підтверджується для інших.

Неньютонівської рідинимають значно складніший зв'язок між напруженням зсуву і градієнтом швидкості, ніж проста лінійність. Тому, для різних видів рідин застосовують різні моделі в'язкості:

· Ньютонівська рідина: рідина, така як вода і більшість газів, що має стале значення динамічної в'язкості.

· Тиксотропна рідина: рідина, в'язкість якої з перебігом часу зменшується (водоносні ґрунти (пливуни), біологічні структури, різні технічні матеріали).

Последнее изменение этой страницы: 2016-06-10

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...