Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Железобетон. Основные свойства. Защитный слой бетона

1. Особенности заводского производства

При проектировании железобетонных элементов предусматривают возможность высокопроизводительного изготовления их на специальных заводах и удобного монтажа на строительных площадках путем выбора оптимальных габаритов, экономичных форм сечения, рациональных способов армирования. Конструктивное решение элементов и технология заводского изготовления находятся в тесной взаимосвязи. Элементы, конструкция, которых допускает их массовое изготовление на заводе или на полигоне с использованием высокопроизводительных машин и механизмов без трудоемких ручных операций, являются технологичными. Производство сборных железобетонных элементов ведется по нескольким технологическим схемам.

Конвейерная технология. Элементы изготовляют в формах, установленных на вагонетках и перемещаемых по рельсам конвейера от одного агрегата к другому. По мере передвижения вагонетки последовательно выполняют необходимые технологические операции: установку арматурных каркасов, натяжение арматуры предварительно напряженных элементов, установку вкладышей-пустотообразователей для элементов с пустотами, укладку бетонной смеси и ее уплотнение, извлечение вкладышей, термовлажностную обработку изделия для ускорения твердения бетона. Все формы-вагонетки перемещаются с установленным принудительным ритмом. Высокопроизводительная конвейерная технология применяется на крупных заводах при массовом выпуске элементов относительно малой массы.

Поточно-агрегатная технология. Технологические операции производят в соответствующих отделениях завода, а форма с изделием перемещается от одного агрегата к другому кранами. Технологический ритм перемещения форм заранее не установлен и не является принудительным.

Стендовая технология. Ее особенность состоит в том, что изделия в процессе изготовления и тепловой обработки остаются неподвижными, а агрегаты, выполняющие необходимые технологические операции, перемещаются вдоль неподвижных форм. Стенды оборудованы передвижными кранами, подвижными бетоноукладчиками, а так же вибраторами для уплотнения бетонной смеси. Элементы изготовляют в гладких или профилированных рамах (матрицах или кассетах). По стендовой технологии изготовляют крупноразмерные и предварительно напряженные элементы промышленных зданий (фермы, балки покрытий, подкрановые балки, колонны и др.).

При изготовлении плит перекрытий и панелей стен гражданских зданий широко применяется кассетный способ. Элементы изготовляют на неподвижном стенде в ракете вертикальных металлических кассет, вмещающем Одновременно несколько панелей. Сборка и разборка кассет механизированы. Арматурные каркасы размером с панель устанавливают в отсеках кассеты. Бетонируют подвижной бетонной смесью, подаваемой пневматическим транспортом по трубам. Благодаря формованию изделий в вертикальном положении поверхность плит и панелей получается ровной и гладкой. При вибропрокатном способе плиты перекрытий и панели стен изготовляют на непрерывно движущейся ленте, гладкая или рифленая поверхность которой служит формой изделия. После укладки арматурного каркаса бетонная смесь, поданная на ленту, вибрируется и уплотняется с помощью расположенных сверху валков. Последовательно прокатываемые изделия, укрытые сверху и подогреваемые снизу, за время перемещения по ленте (в течение нескольких часов) набирают необходимую прочность и после охлаждения на стеллажах транспортируются на склад готовой продукции. Технологические операции подчинены единому ритму — скорости движения формующей ленты.

Изготовить весь комплекс сборных изделий, необходимых для возведения здания, по одной технологической схеме нельзя. Поэтому на заводах сборных железобетонных изделий одновременно используют несколько технологических схем. Разработка новых прогрессивных конструкций в ряде случаев вызывает необходимость совершенствования технологической схемы или создания новой технологии, что, в свою очередь, может потребовать определенного приспособления конструкции к технологическим требованиям.

2. Сущность предварительно напряженного железобетона и способы создания предварительного напряжения

Предварительно напряженными называют такие железобетонные конструкции, в которых до приложений нагрузок в процессе изготовления искусственно создаются значительные сжимающие напряжения в бетоне пу-1 тем натяжения высокопрочной арматуры. Начальный сжимающие напряжения создаются в тех зонах бетона{ которые впоследствии под воздействием нагрузок испытывают растяжение. При этом повышается трещиностойкость конструкции и создаются условия для применения высокопрочной арматуры, что приводит к экономии металла и снижению стоимости конструкции.

Удельная стоимость арматуры я, равная отношению ее цены Ц (руб/т) к расчетному сопротивлению Rs, снижается с увеличением прочности арматуры ( 1.26, а). Поэтому высокопрочная арматура значительно выгоднее горячекатаной. Однако применять высокопрочную арматуру в конструкциях без предварительного напряжения нельзя, так как при высоких растягивающих напряжениях в арматуре и соответствующих деформациях удлинения в растянутых зонах бетона появляются трещины значительного раскрытия, лишающие конструкцию необходимых эксплуатационных качеств.

Сущность предварительно напряженного железобетона в экономическом эффекте, достигаемом благодаря применению высокопрочной арматуры. Кроме того, высокая трещиностойкость предварительно напряженного железобетона повышает его жесткость, сопротивление динамическим нагрузкам, коррозионную стойкость, долговечность.

В предварительно напряженной балке под нагрузкой ( 1.26,6) бетон испытывает растягивающие напряжения только после погашения начальных сжимающих напряжений. При этом сила FCrc, вызывающая образование трещин или ограниченное по ширине их раскрытие, превышает нагрузку, действующую при эксплуатации Fser. С увеличением нагрузки на балку до предельного разрушающего значения Fu напряжения в арматуре и бетоне достигают предельных значений.

Таким образом, железобетонные предварительно напряженные элементы работают под нагрузкой без трещин или с ограниченным по ширине их раскрытием (FSer<Fcrc<Fu), в то время как конструкции без предварительного напряжения эксплуатируются при наличии трещин (FCrc<FSer<Fu) и при больших значениях прогибов ( 1.26, г). В этом различие конструкций предварительно напряженных и без предварительного напряжения с вытекающими отсюда особенностями их расчета," конструирования и изготовления.

В производстве предварительно напряженных элементов возможны два способа создания предварительного напряжения: натяжение на упоры и натяжение на бетон. При натяжении на упоры до бетонирования элемента арматуру заводят в форму, один конец ее закрепляют в упоре, другой натягивают домкратом или другим приспособлением до заданного контролируемого напряжения ( 1.27, а). После приобретения бетоном необходимой кубиковой прочности перед обжатием Rbp арматуру отпускают с упоров. Арматура при восстановлении упругих деформаций в условиях сцепления с бетоном обжимает окружающий бетон ( 1.27, б). При так называемом непрерывном армировании форму укладывают на поддон, снабженный штырями, арматурную проволоку специальной навивочной машиной навивают на трубки, надетые на штыри поддона, с заданной величиной напряжения, и конец ее закрепляют плашечным зажимом ( 1.27, в). После того как бетон наберет необходимую прочность, изделие с трубками снимают со штырей поддона, при этом арматура обжимает бетон.

Стержневую арматуру можно натягивать на упоры электротермическим способом. Стержни с высаженными головками разогревают электрическим током до 300— 350°С, заводят в форму и закрепляют на концах в упорах форм. Арматура при восстановлении начальной длины в процессе остывания натягивается на упоры.

При натяжении на бетон сначала изготовляют бетонный или слабоармированный элемент ( 1.27, г), затем при достижении бетоном прочности Яьр создают в нем предварительное сжимающее напряжение. Напрягаемую арматуру заводят в каналы или в пазы, оставляемые при бетонировании элемента, и натягивают на бетон ( 1.27, д). При этом способе напряжения в арматуре контролируются после окончания обжатия бетона. Каналы, превышающие диаметр арматуры на 5—15 мм, создают в бетоне укладкой извлекаемых пустотообразователей (стальных спиралей, резиновых шлангов и т. п.) или оставляемых гофрированных стальных трубок и др. Сцепление арматуры с бетоном создается после обжатия инъецированием — нагнетанием в каналы цементного теста или раствора под давлением. Инъецирование производится через заложенные при изготовлении элемента тройники — отводы. Если напрягаемая арматура располагается с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров и т. п.), то навивка ее с одновременным обжатием бетона производится специальными навивочными машинами. В этом случае на поверхность элемента после натяжения арматуры наносят Торкретированием (под давлением) защитный слой бетона.

Натяжение на упоры как более индустриальное является основным способом в заводском производстве. Напряжение на бетон применяется главным образом для крупноразмерных конструкций и при соединении их на Монтаже.

3. Сцепление арматуры с бетоном

В железобетонных конструкциях благодаря сцеплению материалов скольжения арматуры в бетоне под нагрузкой не происходит. Прочность сцепления арматуры :с бетоном оценивается сопротивлением выдергиванию "или вдавливанию арматурных стержней, заанкерованных в бетоне ( 1.28, а). Согласно опытным данным, прочность сцепления зависит от: 1) зацепления в бетоне выступов на поверхности арматуры периодического профиля ( 1.28, б); 2) сил трения, развивающихся при контакте арматуры с бетоном под влиянием его усадки; 3) склеивания арматуры с бетоном, возникающего благодаря клеющей способности цементного геля. Наибольшее влияние на прочность сцепления оказывает первый фактор — он обеспечивает около 3Д общего сопротивления скольжению арматуры в бетоне. Если арматура гладкая и круглая, сопротивление скольжению уменьшается в 2—3 раза. Исследования показали, что распределение напряжений сцепления арматуры с бетоном по длине заделки стержня неравномерно, и наибольшее напряжение сцепления стыках не зависит от длины анкеровки стержня Ian.

Прочность сцепления возрастает с повышением класса бетона, уменьшением водоцементного отношения, а также с увеличением возраста бетона. При недостаточной заделке к концам стержней приваривают коротыши или шайбы (по концам стержней из гладкой стали класса A-I устраивают крюки). При вдавливании арматурного стержня в бетон прочность сцепления больше, чем при его выдергивании, вследствие сопротивления окружающего слоя бетона поперечному расширению сжимаемого стержня. С увеличением диаметра стержня и напряжения в нем а прочность сцепления при сжатии возрастает, а при растяжении уменьшается ( 1.28, в). Отсюда следует, что для лучшего сцепления арматуры с бетоном при конструировании железобетонных элементов диаметр растянутых стержней следует ограничивать.

4. Анкеровка арматуры в бетоне

В железобетонных конструкциях закрепление концов арматуры в бетоне — анкеровка — достигается запуском арматуры за рассматриваемое сечение на длину зоны передачи усилий с арматуры на бетон (обусловленную сцеплением арматуры с бетоном), а также с помощью анкерных устройств.

Ненапрягаемая арматура из гладких стержней класса A-I снабжена на концах анкерами в виде полукруглых крюков диаметром 2,5 d, а в конструкциях из бетонов на пористых заполнителях —диаметром 5 d ( 1.29, а). Анкерами гладких стержней в сварных сетках и каркасах служат стержни поперечного направления, поэтому их применяют без крюков на концах. Арматурные стержни периодического профиля обладают значительно лучшим сцеплением с бетоном, их применяют без крюков на концах.

Ненапрягаемую арматуру периодического профиля заводят за нормальное к продольной оси элемента сечение, в котором она учитывается с полным расчетным сопротивлением на длину зоны анкеровки

Если стержни заводят за нормальное к продольной оси элемента сечение, в котором они используются с неполным расчетным сопротивлением, то при определении 1ап значение Rs умножают на отношение площадей сечения арматуры, необходимой при полном использовании расчетного сопротивления, к фактической.

На крайних свободных опорах изгибаемых элементов продольные растянутые стержни заводят для анкеровки за внутреннюю грань опоры на длину не менее \0d; если наклонные трещины в растянутой зоне не образуются, то стержни заводят за внутреннюю грань опоры на длину не менее 5 d ( 1.29, б).

Напрягаемая арматура — стержни периодического профиля или арматурные канаты — при натяжении на упоры и достаточной прочности бетона применяется в конструкциях без специальных анкеров; арматура при натяжении на бетон (арматурные пучки) или натяжении на упоры в условиях недостаточного сцепления с бетоном (гладкая высокопрочная проволока) всегда закрепляется в бетоне специальными анкерами.

В элементах из легкого бетона значение, вычисленное по формуле (1.21), увеличивается в 1,2 раза. Для стержней периодического профиля всех видов значение 1Р принимается не менее 15 а. При мгновенной передаче усилия обжатия на бетон для стержней периодического профиля диаметром до 18 мм (срезаемых с натяжных приспособлений упоров форм при отпуске натяжения) значение 1Р увеличивается в 1,25 раза. В элементах конструкций, эксплуатируемых при расчетных температурах ниже — 40 °С, значения Акр увеличиваются в 2 раза.

Предварительное напряжение в арматуре считается изменяющимся линейно от нуля у края элемента до полного значения в сечении, расположенном на расстоянии 1Р от края элемента ( 1.30).

Для того чтобы бетон при переда ч'е на него усилий с напрягаемой арматуры не раскалывался, концы элементов усиливают закладными деталями с анкерными стержнями, хомутами и т. п.

Для захвата, натяжения и закрепления на упорах канатов и стержневой арматуры периодического профиля применяют специальные цанговые захваты; кроме того, для стержневой арматуры применяют приваренные коротыши или шайбы, нарезку накатом без ослабления сечения, высаженные головки правильной формы или неправильной формы со втулкой ( 1.31).

Подставляя в (1.22) деформации, выраженные через напряжения по (1.23), (1.24), (1.26)

найдем значение растягивающих напряжений в бетоне v=Јe/Јfr —отношение модулей упругости арматуры и бетона. При усадке железобетона растягивающие напряжения в бетоне зависят от свободной усадки бетона es, коэффициента армирования ц, класса бетона. С увеличением содержания арматуры в бетоне растягивающие напряжения оы увеличиваются, и, если они достигают временного сопротивления при растяжении Rbt, возникают усадочные трещины. Растягивающие напряжения р бетоне при стесненной усадке элемента, армированного односторонней несимметричной арматурой, возрастает вследствие внецентренного приложения к сечению усилия в арматуре.

Начальные растягивающие напряжения в бетоне от 5 усадки способствуют более раннему образованию трещин в тех зонах железобетонных элементов, которые испытывают растяжение от нагрузки. Однако с появлением трещин влияние усадки уменьшается. В стадии разрушения усадка не влияет на несущую способность статически определимого железобетонного элемента. | В статически неопределимых железобетонных конструкциях (арках, рамах и т. п.) лишние связи препятствуют усадке железобетона и поэтому усадка вызывает появление дополнительных внутренних усилий. Влияние усадки эквивалентно понижению температуры на определенное число градусов. Для тяжелого бетона возможно среднее значение es; s 1,5-10~4, что при коэффициенте линейной температурной деформации а* = 1 • lCh^C эквивалентно понижению температуры на — 15°С. Для железобетона на пористых заполнителях esi,s&2-10~4. Для того чтобы уменьшить дополнительные усилия до усадки, железобетонные конструкции промышленных и гражданских зданий большой протяженности делят усадочными швами на блоки.

6. Ползучесть железобетона

Ползучесть железобетона является следствием ползучести бетона. Стальная арматура, как и при усадке, становится внутренней связью, препятствующей свободным деформациям ползучести.

Роль поперечных стержней или хомутов сводится главным образом к предотвращению выпучивания продольных сжатых стержней.

При этом реакции связей

с течением времени при постоянных напряжениях в арматуре уменьшаются ( 1.38, б).

На работу коротких сжатых железобетонных элементов ползучесть бетона оказывает положительное влияние, обеспечивая полное использование прочности бетона и арматуры; в гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов, что может снижать их несущую способность; в изгибаемых элементах ползучесть вызывает увеличение прогибов; в предварительно напряженных конструкциях ползучесть приводит к потере предварительного напряжения.

Ползучесть и усадка железобетона протекают одновременно и совместно влияют на работу конструкции.

7. Защитный слой бетона

Защитный слой бетона в железобетонных конструкциях создается размещением арматуры на некотором удалении от поверхности элемента. Защитный слой бетона необходим для совместной работы арматуры с бетоном на всех стадиях изготовления, монтажа и эксплуатации конструкций, он защищает арматуру от внешних воздействий, высокой температуры, агрессивной среды и т. п. Толщина защитного слоя бетона на основании опыта эксплуатации железобетонных конструкций устанавливается в зависимости от вида и диаметра арматуры, размера сечений элемента, вида и класса бетона, условий работы конструкции и т.д.

Толщина защитного слоя бетона для продольной арматуры ненапрягаемой или с натяжением на упоры должна быть не менее диаметра стержня или каната; в плитах и стенках толщиной до 100 мм —10 мм; в плитах и стенках толщиной более 100 мм, а также балках высотой менее 250 мм— 15 мм; в балках высотой 250 мм и более — 20 мм; в сборных фундаментах—30 мм.

Толщина защитного слоя бетона у концов продольной напрягаемой арматуры на участке передачи усилий с арматуры на бетон должна составлять не менее двух диаметров стержня из стали классов A-IV, Ат-IV ИЛИ арматурного каната и не менее трех диаметров стержня классов A-V, A-VI, Ат-V, AT-VI. Причем толщину защитного слоя бетона на указанном участке длины элемента принимают не менее 40 мм для стержневой арматуры всех классов и не менее 20 мм для арматурного каната. Защитный слой бетона при наличии стальных опорных деталей допускается у концов элемента принимать таким же, как и для сечения в пролете.

Толщина защитного слоя бетона для продольной напрягаемой арматуры, натягиваемой на бетон и располагаемой в каналах (расстояние от поверхности конструкции до ближайшей к ней поверхности канала), должна быть не менее 20 мм и не менее половины диаметра канала, а при диаметре арматурного пучка 32 мм и более еще и не менее этого диаметра.

Расстояние от концов продольной ненапрягаемой арматуры до торца элементов должно быть не менее 10 мм, а, для сборных элементов большой длины (панелей длиной более 12 м, ригелей— более 9 м, колонн — более 18 м)—не менее 15 мм.

Минимальную толщину защитного слоя бетона для поперечных стержней каркасов и хомутов при высоте сечения элемента менее 250 мм принимают 10 мм, при высоте сечения элемента 250 мм и более— 15 мм.

8. Средняя плотность железобетона

Средняя плотность тяжелого железобетона при укладке бетонной смеси с вибрированием равна 2500 кг/м3, при укладке бетонной смеси без вибрирования — 2400 кг/м3. При значительном содержании арматуры (свыше 3%) плотность железобетона определяют как сумму масс бетона и арматуры в 1 м3 объема конструкции. Средняя платность легкого железобетона определяется так же, как сумма масс бетона и арматуры в 1 м3 объема конструкции.

9. Армоцемент

Армоцемент — особый вид железобетона, приготовленный на цементно-песчаном бетоне, армированный сетками из тонкой проволоки диаметром 0,5—1 мм с мелкими ячейками размером до 10X^0 мм. Насыщение сетками густое, расстояние между сетками 3—5 мм, что позволяет получить достаточно однородный по свойствам материал. Из армоцемента изготовляют конструкции с малой толщиной стенок 10—30 мм (оболочки, волнистые своды и т. п.). Армирование устанавливается расчетом, коэффициент сетчатого армирования должен быть в пределах ц,1= Лs/6=0,004...0,025, где As — площадь сечения сеток на единицу длины, см2/см; б —толщина элемента, см.

Предельная растяжимость бетона в армоцементных конструкциях благодаря значительному увеличению поверхности сцепления арматуры с бетоном возрастает. Малая ширина раскрытия трещин — основная особенность армоцемента, позволяющая достигнуть полного использования прочности арматурных сеток в конструкциях без предварительного напряжения. В растянутых зонах армоцементных конструкций возможно комбинированное армирование — сетками и напрягаемой арматурой.

Армоцементные конструкции можно применять лишь при нормальной влажности и отсутствии агрессивных воздействий среды, так как их коррозионная стойкость невелика. Огнестойкость их меньше, чем огнестойкость железобетонных конструкций. Армоцементные конструкции не рекомендуется применять при систематическом воздействии ударной нагрузки.

10. Армополимербетон

Армополимербетон изготовляют из полимербетона со стальной или неметаллической арматурой. Арматура хорошо сцепляется с полимербетоном. Коррозия стальной арматуры в армополимербетоне не наблюдается. Армополимербетон обладает высокой коррозионной стойкостью и поэтому применение его целесообразно в конструкциях и сооружениях, работающих в агрессивной среде и при высоком гидростатическом давлении.

11. Воздействие температуры на железобетон

Под воздействием температуры в железобетоне возникают внутренние взаимно уравновешенные напряжения, вызванные некоторым различием в значениях коэффициента линейной температурной деформации цементного камня, зерен заполнителей и стальной арматуры. При воздействии на конструкцию температуры до 50°С внутренние напряжения невелики и практически не приводят к снижению прочности бетона. В условиях систематического воздействия технологических температур порядка 60—200 °С необходимо учитывать некоторое снижение механической прочности бетона (примерно на 10 %). При длительном нагреве до 500—600°С и последующем охлаждении бетон разрушается.

Основными причинами разрушения бетона при воздействии высоких технологических температур являются значительные внутренние растягивающие напряжения, возникающие вследствие разности температурных деформаций цементного камня и зерен заполнителей, а также вследствие увеличения в объеме свободной извести, которая выделяется при дегидратации минералов цемента и гасится влагой воздуха.

Для конструкций, испытывающих длительное воздействие высоких технологических температур, применяют специальный жаростойкий бетон. Прочность сцепления арматуры периодического профиля с бетоном снижается при температуре до 500°С на 30%. Однако прочность сцепления гладкой арматуры с бетоном начинает резко снижаться уже при 250 °С.

В статически неопределимых железобетонных конструкциях под воздействием сезонных изменений температур возникают дополнительные усилия, которые при большой протяженности конструкции становятся весьма значительными. Чтобы уменьшить дополнительные усилия от изменения температуры, здания большой протяженности делят на отдельные блоки температурными швами, которые обычно совмещают с усадочными швами.

12. Коррозия железобетона и меры защиты от нее

Коррозионная стойкость элементов железобетонных конструкций зависит от плотности бетона и степени агрессивности среды. Коррозия бетона, имеющего недостаточную плотность, может происходить от воздействия фильтрующейся воды, которая растворяет составляющую часть цементного камня — гидрат окиси кальция. Наибольшей растворяющей способностью обладает мягкая вода. Внешним признаком такой коррозии бетона являются белые хлопья на его поверхности. Другой вид коррозии бетона возникает под влиянием газовой или жидкой агрессивной среды: кислых газов в сочетании с повышенной влажностью, растворов кислот, сернокислых солей и др. При взаимодействии кислоты с гидратом окиси кальция цементного камня бетон разрушается, Продукты химического взаимодействия агрессивной среды и бетона, кристаллизуясь, постепенно заполняют поры и каналы бетона. Рост кристаллов приводит к разрыву стенок пор, каналов и быстрому разрушению бетона. Наиболее вредны для бетона соли ряда кислот, особенно серной кислоты; они образуют в цементе сульфат кальция и алюминия. Сульфатоалюминат кальция, растворяясь, вытекает и образует белые подтеки на поверхности бетона. Весьма агрессивны грунтовые воды, содержащие сернокислотный кальций, а также воды с магнезиальными и аммиачными солями. Морская вода при систематическом воздействии оказывает вредное влияние на бетон, поскольку содержит сульфатомагнезит, хлористую магнезию и другие вредные соли.

Коррозия арматуры (ржавление) происходит в результате химического и электролитического воздействия окружающей среды; обычно она протекает одновременно с коррозией бетона,- но может протекать и независимо от коррозии бетона. Продукт коррозии арматуры имеет в несколько раз больший объем, чем арматурная сталь, и создает значительное радиальное давление на окружающий слой. При этом вдоль арматурных стержней возникают трещины и отколы бетона с частичным обнажением арматуры.

Мерами защиты от коррозии железобетонных конструкций, находящихся в условиях агрессивной среды, в зависимости от степени агрессии являются: снижение фильтрующей способности бетона введением специальных добавок, повышение плотности бетона, увеличение толщины защитного слоя бетона, а также применение лакокрасочных или мастичных покрытий, оклеечной изоляции, замена портландцемента глиноземистым цементом, применение специального кислотостойкого бетона

Защитный слой бетона

Защитный слой бетона предназначен для защиты арматуры от внешних атмосферных, температурных и других воздействий; кроме того, он обеспечивает совместную работу арматуры с бетоном на всех стадиях работы железобетонного элемента.

Для продольной рабочей арматуры (ненапрягаемой и напрягаемой, натягиваемой на упоры) толщина защитного слоя должна составлять, как правило, не менее диаметра стержня или каната (пучка) и не менее значений, указанных в табл. 6.10.

Для поперечной, распределительной и конструктивной арматуры толщину защитного слоя бетона принимают не менее диаметра стержня и не менее значений, указанных в табл. 6.10. Для элементов сборных железобетонных конструкций из тяжелого и мелкозернистого бетона классов В20 и выше толщину защитного слоя для продольной арматуры допускается принимать на 5 мм меньше диаметра стержня, но не менее значений, указанных в табл. 6.10.

Для железобетонных плит из тяжелого и мелкозернистого бетона классов В20 и выше, изготовляемых па заводах в металлических формах и защищаемых от коррозии сверху бетонной подготовкой или стяжкой и другими методами, толщину защитного слоя для верхней арматуры допускается принимать на 5 мм меньше диаметра стержня, но не менее 5 мм.

Для однослойных плит перекрытия из легкого бетона с предварительно напряженной арматурой в двух взаимно перпендикулярных направлениях толщину защитного слоя назначают в соответствии со специальными техническими условиями.

В изгибаемых, растянутых и внецентренно сжатых элементах (кроме фундаментов) толщина защитного слоя для растянутой рабочей арматуры, как правило, не должна превышать 50 мм. В защитном слое толщиной свыше 50 мм следует устанавливать конструктивную арматуру в виде сеток. При этом площадь сечения продольной арматуры сеток должна быть не менее 5% площади рабочей растянутой арматуры. Шаг поперечной арматуры сеток не должен превышать 600 мм и быть не более высоты сечения элемента.

Вид элементов Толщина или высота сечения, мм Минимальная толщина защитного слоя, мм
Продольная рабочая арматура
Плиты, стенки, полки ребристых плит До 100 включ.
Свыше 100
Балки, ребра плит Менее 250
250 и более
Колонны, стойки Любая
Фундаментные балки, сборные фундаменты и подколонники монолитных фундаментов --------------
Монолитные фундаменты:    
При наличии бетонной подготовки --------------
При отсутствии бетонной подготовки --------------
Однослойные элементы из легкого бетона классов В7,5 и ниже, выполняемые без фактурных слоев --------------
Наружные стеновые панели и блоки из легкого бетона, формируемые без фактурных слоев в горизонтальном положении со стороны:    
Поддона --------------
противоположной --------------
Наружные стеновые панели и блоки из легкого бетона, при наличии фактурных слоев с одной или двух сторон из цементно-песчаного раствора класса В7,5 на плотном песке -------------- 20 (вместе с фактурным слоем)
Двух- и трехслойные элементы при расположении рабочей арматуры в слоях из плотного бетона класса В12,5 и выше -------------- 10( в сторону низкопрочного бетона)
Однослойные элементы из ячеистого бетона --------------
Двухслойные элементы толщиной более 100 мм при расположении рабочей арматуры в слое тяжелого бетона --------------
Поперечная, распределительная и конструктивная арматура
Элементы из тяжелого, мелкозернистого и легкого бетонов классов выше В7,5 Менее 250
250 и более
Элементы из легкого бетона класса В7,5 и ниже, а также их ячеистого бетона любая

 

Толщина защитного слоя бетона у концов предварительно напряженных элементов на длине зоны передачи напряжений должна составлять не менее:
для стержневой арматуры классов A-IV, А-Шв и для арматурных канатов - 2d;
для стержневой арматуры классов A-V, А-VI, Ат-VII - 3d.

Кроме того, толщина защитного слоя бетона на указанном участке длины элемента должна быть не менее 40 мм для стержневой арматуры всех классов и не менее 20 мм для арматурных канатов и пучков.

Допускается защитный слой бетона для сечений у опоры принимать таким же, как для сечений в пролете в следующих случаях:
для предварительно напряженных элементов с сосредоточенной передачей опорных усилий при наличии стального опорного изделия и косвенной арматуры (сварных поперечных сеток или охватывающих продольную арматуру хомутов);
в плитах, панелях, настилах и опорах ЛЭП при условии постановки у концов дополнительной поперечной арматуры (корытообразных сварных сеток или замкнутых хомутов), при этом диаметр поперечной аоматуры должен быть не менее 0,25 диаметра продольной напрягаемой арматуры и не менее 4 мм.

В элементах с продольной напрягаемой арматурой, натягиваемой на бетон и располагаемой в каналах, расстояние от поверхности элемента до поверхности канала принимают не менее 40 мм и не менее ширины канала; указанное расстояние до боковых граней элемента должно быть, кроме того, на менее высоты канала.

При расположении напрягаемой арматуры в пазах или снаружи сечения элемента толщину защитного слоя бетона, образуемого последующим торкретированием или иным способом, принимают не менее 20 мм. Для возможности свободной укладки в форму цельных арматурных стержней, сеток или каркасов, идущих по всей длине или ширине изделия, концы этих стержней должны отстоять от грани элемента на расстоянии, мм, не менее: сборные плиты перекрытий, стеновые панели пролетом до 18 м и балки длиной до 9 м включительно - 10; сборные колонны длиной более 18м -15 ; прочие сборные элементы длиной до 9 м -10 ; монолитные элементы длиной до 6 м при диаметре стержней до 40 мм и элементы любой длины при диаметре стержней более 40 мм - 20. При этом необходимо обеспечивать анкеровку стержней на опорах.

В полых элементах кольцевого или коробчатого сечения расстояние от стержней продольной арматуры до внутренней поверхности бетона должно удовлетворять требованиям табл. 6.9.

Для элементов, работающих в агрессивных средах, толщину защитного слоя бетона назначают с учетом требований СНиП 2.03.11 -85 “Защита строительных конструкций от коррозии”. При назначении толщины защитного слоя бетона необходимо также учитывать требования СНиП 2.01.02-85 “Противопожарные нормы проектирования зданий и сооружений”.

В изгибаемых и внецентренно сжатых элементах из ячеистого бетона концы продольных стержней ненапрягаемой арматуры должны отстоять от торца элемента не более чем на 10 мм.


 

Последнее изменение этой страницы: 2016-06-10

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...