Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Трансформация силы и ритма возбуждения

Нервный центр может изменять ритм поступающего в него возбу­ждения. Так, при высокой возбудимости нейрона происходит учаще­ние импульсации. В этом случае афферентная волна вызывает дли­тельные сверхпороговые ВПСП, на гребне которых возникает серия потенциалов действия. Поэтому на каждое одиночное раздражение нервная клетка отвечает залпом импульсов. И, наоборот, - при низ­ком уровне возбудимости нейрона чаще происходит урежение ритма. Это объясняется тем, что возникновение потенциала действия в та­ких нервных клетках возможно только при суммации приходящих импульсов. В результате – ритм возбуждения на входе в нервный центр выше, чем на выходе. В нервных центрах может происходить и трансформация силы (амплитуды) импульса, т.е. слабые потенциалы действия усиливаются, а сильные – ослабляются.

 

Последействие

После окончания действия раздражителя активное состояние нервной клетки (нервного центра) сохраняется еще некоторое время. Это яв­ление было названо последействием. В основе механизма последей­ствия «лежит» продолжительная следовая деполяризация мембраны нейрона, которая обычно возникает в результате длительного ритми­ческого его раздражения. На волне деполяризации может возникнуть серия новых потенциалов действия, «поддерживающих» рефлектор­ный акт без раздражения. Но в этом случае наблюдается лишь крат­ковременное последействие. Более продолжительный эффект объяс­няется возможностью длительной циркуляции нервных импульсов по замкнутым кольцевым путям нейронов в пределах одного и того же нервного центра. Иногда такие «заблудившиеся» волны воз­буждения могут выходить на магистральный путь и таким образом «поддерживать» рефлекторный акт, несмотря на то, что действие основного раздражения уже давно закончилось.

Непродолжительные последействия (длительностью около часа) лежат в основе т.н. кратковременной (оперативной) памяти.

 

Инертность

В нервных центрах следы прежних возбуждений могут сохраняться более продолжительное время, чем это происходит при последей­ствии. Так, в головном мозгу они не исчезают в течение нескольких дней, а в коре больших полушарий – остаются на десятки лет. Такое свойство нервных центров получило название инертности. Еще И. П. Павлов считал, что это свойство лежит в основе механизмов па­мяти. Аналогичной точки зрения придерживается и современная фи­зиологическая наука. Согласно биохимической теории памяти (Хи­ден), в процессе запоминания происходят структурные изменения в молекулах рибонуклеиновой кислоты (РНК), содержащейся в нерв­ных клетках, проводящих определенные волны возбуждения. Это ве­дет к синтезу «измененных» белков, составляющих биохимическую основу памяти. В отличие от последействия, инертность обеспечива­ет т.н. долгосрочную память.

 

Утомляемость

Утомляемость нервных центров характеризуется ослаблением или полным прекращением рефлекторной реакции при продолжительном раздражении афферентных путей рефлекторной дуги. Причиной утомляемости нервных центров является нарушение передачи возбу­ждения в межнейронных синапсах. К этому приводит резкое умень­шение запасов медиатора в окончаниях аксона и снижение чувстви­тельности к нему рецепторов постсинаптической мембраны.

 

Тонус

Тонусом нервных центров называют состояние их незначительного постоянного возбуждения, в котором они пребывают. Поддерживает­ся тонус непрерывным редким потоком афферентной импульсации от многочисленных периферических рецепторов, что приводит к выде­лению небольшого количества медиатора в синаптическую щель.

 

Пластичность

Пластичностью называется способность нервных центров при необ­ходимости изменять или перестраивать свою функцию.

 

Координация нервных процессов

В центральную нервную систему постоянно поступает множество импульсов возбуждения, приходящих от многочисленных экстеро- , интеро- и проприорецепторов. ЦНС отвечает на эти возбуждения строго избирательно. Это обеспечивается одной из важнейших функ­ций мозга – координацией рефлекторных процессов.

Координация рефлекторных процессов – это взаимодействие ней­ронов, синапсов, нервных центров и, протекающих в них процессов возбуждения и торможения, - благодаря которому, обеспечивается согласованная деятельность различных органов, систем жизнедея­тельности и организма в целом.

Координация нервных процессов возможна благодаря следующим явлениям:

 

Доминанта

Доминанта – это временное, стойкое, господствующее в каком-либо нервном центре мозга возбуждение, подчиняющее себе все другие центры и определяющее тем самым конкретный и целесообразный характер ответной реакции организма не внешние и внутренние раздражения. Принцип доминанты был сформулирован русским уче­ным А. А. Ухтомским.

Доминантный очаг возбуждения характеризу­ется следующими основными свойствами: повышенной возбудимо­стью, способностью суммировать возбуждения, стойкостью возбу­ждения, инертностью. Доминирующий в ЦНС центр способен при­тягивать (привлекать) к себе нервные импульсы от других нервных центров, менее возбужденных в данный момент. За счёт этих им­пульсов, ему не адресованных, возбуждение его еще более усилива­ется, а деятельность других центров подавляется.

Доминанты могут быть экзогенного и эндогенного происхождения.

Экзогенная доминанта возникает под влиянием факторов окружаю­щей среды. Например, собаку во время дрессировки может отвлечь от работы появление какого-либо более сильного раздражителя: кошка, громкий выстрел, взрыв и др.

Эндогенная доминанта создаётся факторами внутренней среды организма. Это могут быть гормоны, физиологически активные вещества, продукты метаболизма и др. Так, при понижении в крови содержания питательных веществ (осо­бенно глюкозы) происходит возбуждение пищевого центра и появ­ляется чувство голода. С этого момента поведение человека или жи­вотного будет ориентировано исключительно на поиск пищи и на­сыщение.

Самыми стойкими доминантами у человека и животных являются пищевые, половые и оборонительные.

 

Обратная связь

Важное значение для нормальной работы мозга играет принцип коор­динации – обратная связь (обратная афферентация). Всякий ре­флекторный акт заканчивается не сразу после «команды», поступив­шей в виде потока импульсов от мозга к органу-эффектору. Так, не­смотря на то, что рабочий орган эту «команду» выполнил, - от его ре­цепторов в ЦНС идут обратные волны возбуждения (вторичная аф­ферентация), сигнализирующие о степени и качестве реализации ор­ганом «задания» центра. Это дает возможность центру «сличить» фактический результат с тем, что было запланировано, и при необхо­димости подкорректировать рефлекторный акт. Таким образом, вто­ричные афферентные импульсы осуществляют функцию, которая в технике получила название обратной связи.

 

Конвергенция

Одним из условий нормальной координации рефлекторных процес­сов являются принцип конвергенции и принцип общего конечного пути, открытые английским физиологом Чарльзом Шеррингтоном. Суть этого открытия состоит в том, что импульсы, приходящие в ЦНС по различным афферентным путям, могут конвергировать (сходиться) на одних и тех же промежуточных и эфферентных нейронах. Этому способствует, как уже было отмечено ранее, тот факт, что количество афферентных нейронов в 4-5 раз больше, чем эфферентных. С конвергенцией связан, например, механизм пространственной суммации возбуждения в нервных центрах.

Для объяснения вышеназванного явления Ч. Шеррингтон предложил иллюстрацию в виде «воронки» , которая вошла в историю, как «воронка Шеррингтона». Через широкую её часть импульсы входят в мозг, через узкую – выходят.

 

Общий конечный путь

Принцип общего конечного пути следует понимать так. Рефлектор­ный акт может быть вызван раздражением большого числа различ­ных рецепторов, т.е. один и тот же эфферентный нейрон может вхо­дить в состав многих рефлекторных дуг. Например, поворотом голо­вы, как конечным рефлекторным актом, заканчивается раздражение различных рецепторов (зрительных, слуховых, тактильных и т.д.).

В 1896 году Н. Е. Введенский, а несколько позднее – Ч. Шеррингтон, - открыли реципрокную (сопряженную) иннервацию, как принцип координации. Примером может служить работа нервных центров-ан­тагонистов. Согласно этому принципу, возбуждение одного центра сопровождается реципрокным (сопряженным) торможением другого. В основе реципрокной иннервации лежит поступательное постсинап­тическое торможение.

 

Реципрокное торможение

Оно лежит в основе функционирования мышц-антагонистов и обеспечивает расслабление мышцы в момент сокращения мышцы-антагониста. Афферентное волокно, проводящее возбуждение от проприорецепторов мышц (например, сгибателей), в спинном мозге делится на две ветви: одна из них образует синапс на мотонейроне, иннервирующем мышцу-сгибатель, а другая – на вставочном, тормозном, образующем тормозной синапс на мотонейроне, иннервирующем мышцу-разгибатель. В результате возбуждение, приходящее по афферентному волокну, вызывает возбуждение мотонейрона, иннервирующего сгибатель и торможение мотонейрона мышцы-разгибателя.

 

Индукция

Название следующего принципа координации рефлекторных процес­сов – индукции - заимствовано физиологами у физиков (индукция - «наведение»). Различают два вида индукции: одновременную и после­довательную. Под одновременной индукцией понимают наведение одним процессом (возбуждение или торможение), имеющим место в каком-либо нервном центре, процесса противоположного знака - в другом центре. Одновременная индукция основана на реципрокном торможении в центрах-антагонистах.

Последовательной индукцией называют контрастные изменения со­стояния одного и того же нервного центра после прекращения воз­буждающего или тормозящего раздражения. Такая индукция может быть положительной или отрицательной. Первая – сопровождается усилением возбуждения в центре после прекращения торможения, вторая – наоборот, усилением торможения после прекращения возбу­ждения.

 

Последнее изменение этой страницы: 2016-06-10

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...