Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Первые примитивные электрогенераторы

Электромагниты. Принцип самовозбуждения

 

Перед многими изобретателями в середине XIX века вставал вопрос: нельзя ли заменить неудобные металлические магниты электрическими? Проблема заключалась в том, что электромагниты сами потребляли электрическую энергию, и для их возбуждения требовалась отдельная батарея или, по крайней мере, отдельная магнитоэлектрическая машина. Первое время казалось, что без них невозможно обойтись. В 1866 году Вильде создал удачную модель генератора, в котором металлические магниты были заменены электромагнитами, и их возбуждение вызывала магнитоэлектрическая машина с постоянными магнитами, соединенная с тем же паровым двигателем, который приводил в движение большую машину.

Отсюда оставался только один шаг к собственно динамо-машине, которая возбуждает электромагниты своим собственным током.

 

В том же 1866 году Вернер Сименс открыл принцип самовозбуждения. (Одновременно с ним то же открытие сделали некоторые другие изобретатели.) В январе 1867 года он выступил в Берлинской Академии с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов». В общих чертах его открытие заключалось в следующем. Сименс установил, что в каждом электромагните, после того как намагничивающий ток переставал действовать, всегда оставались небольшие следы магнетизма, которые были способны вызвать слабые индукционные токи в катушке, снабженной сердечником из мягкого магнитного железа и вращавшейся между полюсами магнита. Используя эти слабые токи, можно было привести генератор в действие без помощи извне.

 

Первая динамо-машина, работавшая по принципу самовозбуждения, была создана в 1867 году англичанином Леддом, но в ней еще предусматривалась отдельная катушка для возбуждения электромагнитов. Машина Ледда состояла из двух плоских электромагнитов, между концами которых вращались два якоря Сименса. Один из якорей давал ток для питания электромагнитов, а другой – для внешней цепи. Слабый остаточный магнетизм сердечников электромагнитов сначала возбуждал очень слабый ток в арматуре первого якоря; этот ток обегал электромагниты и усиливал уже имеющееся в них магнитное состояние. Вследствие этого усиливался в свою очередь ток в арматуре, а последний еще более увеличивал силу электромагнитов. Мало-помалу такое взаимное усиление шло до тех пор, пока электромагниты не приобретали полной своей силы. Тогда можно было привести в движение вторую арматуру и получить от нее ток для внешней цепи.

 

Электрогенераторы Грамма

 

Следующий шаг в совершенствовании динамо-машины был сделан в том направлении, что совершенно устранили одну из арматур и воспользовались другой не только для возбуждения электромагнитов, но и для получения тока во внешней цепи. Для этого нужно было только провести ток из арматуры в обмотку электромагнита, рассчитав все так, чтобы последний мог достичь полной своей силы и направить тот же ток во внешнюю цепь. Но при таком упрощении конструкции якорь Сименса оказывался непригодным, так как при быстрой перемене полярностей, в якоре возбуждались сильные паразитические токи, железо сердечников быстро разогревалось, и это могло при больших токах привести к порче всей машины. Необходима была другая форма якоря, более соответствовавшая новому режиму работы.

 

Удачное решение проблемы было вскоре найдено бельгийским изобретателем Зиновием Теофилем Граммом. Он жил во Франции и служил в кампании «Альянс» столярным мастером. Здесь он познакомился с электричеством. Размышляя над усовершенствованием электрогенератора, Грамм в конце концов пришел к мысли заменить якорь Сименса другим, имеющим кольцевую форму. Важное отличие кольцевого якоря состоит в том, что он не перемагничивается и имеет постоянные полюса. (Грамм пришел к своему открытию самостоятельно, но надо сказать, что еще в 1860 г. итальянский изобретатель Пачинотти во Флоренции построил электрический двигатель с кольцеобразным якорем; впрочем, это открытие вскоре было забыто.) Итак, исходная точка поисков Грамма заключалась в том, чтобы заставить вращаться внутри проволочной катушки железное кольцо, на котором наведены магнитные полюсы и таким образом получить равномерный ток постоянного направления.

 

В таком виде воплотилась первоначальная модель электрогенератора. Однако она оказалась неработоспособной. Как писал Грамм в воспоминаниях о своем изобретении, тут явилась новая сложность: кольцо, на которое был намотан проводник, сильно разогревалось вследствие того, что здесь тоже при быстром вращении генератора индуцировались токи. В результате перегрева изоляция то и дело выходила из строя. Ломая голову над тем, как избежать этой неприятности, Грамм понял, что железный сердечник якоря нельзя делать сплошным, так как в этом случае вредные токи оказываются слишком большими. Но разбив сердечник на части так, чтобы образовались разрывы на пути возникающих токов, можно было сильно уменьшить их вредное действие. Этого можно было добиться, изготовив сердечник не из цельного куска, а из проволоки, налагая ее в виде кольца и тщательно изолируя один слой от другого. На это проволочное кольцо затем навивалась обмотка.

 

В целом первая динамо-машина Грамма представляла собой две железные вертикальные стойки, соединенные сверху и снизу стержнями двух электромагнитов. Полюсы этих электромагнитов находились в их середине, так что каждый из них был, как бы составлен из двух, одинаковые полюса которых были обращены друг к другу. Можно рассматривать это устройство иначе и считать, что две половины, прилегающие к каждой стойке и соединенные ею, образовывали два отдельных электромагнита, которые соединялись одноименными полюсами сверху и снизу. В тех местах, где образовывался полюс, к электромагнитам были присоединены особой формы железные насадки, которые входили в пространство между электромагнитами и обхватывали кольцеобразный якорь машины. Две стойки, связывающие оба электромагнита и составлявшие основу всей машины, служили также для того, чтобы держать ось якоря и шкивы машины.

 

В 1870 году, получив патент на свое изобретение, Грамм образовал «Общество производства магнитоэлектрических машин». Вскоре было налажено серийное производство его генераторов, которые произвели подлинную революцию в электроэнергетике. Обладая всеми достоинствами самовозбуждающихся машин, они вместе с тем были экономичны, имели высокий КПД и обеспечивали практически неизменный по величине ток. Поэтому машины Грамма быстро вытеснили другие электрогенераторы и получили широкое распространение в самых разных отраслях. Тогда только появилась возможность легко и быстро преобразовывать механическую энергию в электричество.

 

Как уже говорилось, Грамм создавал свой генератор, как динамо-машину постоянного тока. Но когда в конце 70-х – начале 80-х годов XIX века резко возрос интерес к переменному току, ему не стоило большого труда переделать его для производства переменного тока. В самом деле, для этого надо было только заменить коллектор двумя кольцами, по которым скользят пружины. Сначала генераторами переменного тока пользовались только при освещении, но с развитием электрификации они стали получать все большее применение и постепенно вытеснили машины постоянного тока. Первоначальная конструкция генератора также претерпела значительные изменения. Первая машина Грамма была двухполюсной, но в дальнейшем стали применять многополюсные генераторы, в которых обмотка якоря проходила при каждом обороте мимо четырех, шести и более попеременно установленных полюсов электромагнита. В этом случае ток, возбуждался не с двух сторон колеса, как раньше, но в каждой части колеса, обращенной к полюсу, и отсюда отводился во внешнюю цепь. Таких мест (а соответственно и щеток) было столько, сколько магнитных полюсов. Затем все щетки положительных полюсов связывались вместе, то есть соединялись параллельно. Точно так же поступали и с отрицательными щетками.

 

По мере увеличения мощности генераторов возникла новая проблема – каким образом снять ток с вращающегося якоря с наименьшими потерями. Дело в том, что при больших токах щетки начинали искрить. Кроме больших потерь электроэнергии, это оказывало вредное воздействие на работу генератора. Тогда Грамм посчитал рациональным вернуться к самой ранней конструкции электрогенератора, примененной в машине Пиксии: он сделал арматуру неподвижной, а вращаться заставил электромагниты, ведь снять ток с неподвижной обмотки было проще. Он поместил катушки якоря на железном неподвижном кольце и заставил электромагниты вращаться внутри него. Отдельные катушки он связал между собой так, чтобы все те катушки, которые в данный момент подвергались одинаковому действию электромагнитов, были соединены последовательно. Таким образом, Грамм разбил все катушки на несколько групп и каждую группу употребил для доставления тока в отдельную самостоятельную цепь. Однако возбуждающие ток электромагниты необходимо было питать постоянным током, так как переменный ток не мог вызвать в них неизменной полярности. Поэтому при каждом генераторе переменного тока необходимо было иметь небольшой генератор постоянного тока, откуда ток подводился к электромагнитам при помощи скользящих контактов.

 

 

Заключение

В заключении хотелось бы сказать что, область применения каждого из перечисленных видов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но не способны создать в цепи сколько-нибудь значительную силу тока. Гальванические элементы могут дать большой ток, но продолжительность их действия невелика. Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока.

 

В настоящее время имеется много типов индукционных генераторов. Но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС (в рассмотренной модели это вращающаяся рамка) . Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока Ф=BS через каждый виток. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим. Этим обеспечивается наибольшее значение потока магнитной индукции. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходиться при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки. Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем) , расположенным на том же валу. В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны. Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

 

Современный генератор электрического тока - это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

 

Первые примитивные электрогенераторы

Генератор Фарадея

 

Первый примитивный электрогенератор создал сам Фарадей. Для этого он поместил медный диск между полюсами N и S постоянного магнита. При вращении диска в магнитном поле в нем наводились электрические токи. Если на периферии диска и в его центральной части помещали токоприемники в виде скользящих контактов, то между ними появлялась разность потенциалов, как на гальванической батарее. Замыкая цепь, можно было наблюдать на гальванометре непрерывное прохождение тока.

 

 

Динамо-машина Йедлика

 

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

 

 

Машина Пиксии

 

Установка Фарадея годилась только для демонстраций, но вслед за ней появились первые магнитоэлектрические машины (так стали называть электрогенераторы, в которых использовались постоянные магниты), рассчитанные на создание работающих токов. Самой ранней из них была магнитоэлектрическая машина Пиксии, сконструированная в 1832 году.

 

Принцип ее действия был очень прост: мимо неподвижных, снабженных сердечниками катушек двигались посредством кривошипа и зубчатой передачи лежащие против их полюсы подковообразного магнита, вследствие чего в катушках индуцировались токи. Недостатком машины Пиксии было то, что в ней приходилось вращать тяжелые постоянные магниты. В последующем изобретатели обычно заставляли вращаться катушки, оставляя магниты неподвижными. Правда, при этом приходилось решать другую задачу: каким образом отвести во внешнюю цепь ток с вращающихся катушек? Это затруднение, однако, было легко преодолимо. Прежде всего, катушки соединяли между собой последовательно одними концами их проводки. Тогда другие концы могли служить полюсами генератора. Их соединяли с внешней цепью при помощи скользящих контактов.

 

Он устроен следующим образом: на оси машины крепились два изолированных металлических кольца, каждое из которых было соединено с одним из полюсов генератора. По окружности этих колец вращались две плоские металлические пружины, на которые была заключена внешняя цепь. При таком приспособлении уже не было никаких затруднений от вращения оси машины – ток переходил из оси в пружину в месте их соприкосновения.

 

Еще одно неудобство заключалось в самом характере тока электрогенератора. Направление тока в катушках зависит от того, приближаются они к полюсу магнита или удаляются от него. Из этого следует, что ток, возникающий во вращающемся проводнике, будет не постоянным, а переменным. По мере приближения катушки к одному из полюсов магнита сила тока будет нарастать от нуля до какого-то максимального значения, а затем – по мере удаления – вновь уменьшаться до нуля. При дальнейшем движении ток изменит свое направление на противоположное и опять будет нарастать до какого-то максимального значения, а потом убывать до нуля. Во время следующих оборотов этот процесс будет повторяться. Итак, в отличие от электрической батареи, электрогенератор создает переменный ток.

 

 

Генераторы «Альянс»

 

Электрогенератор прерывистого тока вполне мог заменить неудобную во многих отношениях гальваническую батарею, и потому вызвал большой интерес у тогдашних физиков и предпринимателей. В 1856 году французская фирма «Альянс» даже наладила серийный выпуск больших динамо-машин, приводившихся в действие от парового двигателя. В этих генераторах чугунная станина несла на себе неподвижно укрепленные в несколько рядов подковообразные постоянные магниты, расположенные равномерно по окружности и радиально по отношению к валу. В промежутках между рядами магнитов на валу были установлены несущие колеса с большим числом катушек. Также на валу был укреплен коллектор с 16-ю металлическими пластинами, изолированными друг от друга и от вала машины. Ток, наводимый в катушках при вращении вала, снимался с коллектора при помощи роликов. Одна такая машина требовала для своего привода паровой двигатель мощностью 6–10 л.с. Большим недостатком генераторов «Альянс» было то, что в них использовались постоянные магниты. Так как магнитное действие стальных магнитов сравнительно невелико, то для получения сильных токов нужно было брать большие магниты и в большом числе. Под действием вибрации сила этих магнитов быстро ослабевала. Вследствие всех этих причин КПД машины всегда оставался очень низким. Но даже с такими недостатками генераторы «Альянса» получили значительное распространение и господствовали на рынке в течение десяти лет, пока из не вытеснили более совершенные машины.

 

 

Якорь Сименса

 

Прежде всего, немецкий изобретатель Сименс усовершенствовал движущиеся катушки и их железные сердечники. (Эти катушки с железом внутри получили название «якоря» или «арматуры»). Якорь Сименса в форме «двойного Т» состоял из железного цилиндра, в котором были прорезаны с противоположных сторон два продольных желоба. В желобах помещалась изолированная проволока, которая накладывалась по направлению оси цилиндра. Такой якорь вращался между полюсами магнита, которые тесно его обхватывали. По сравнению с другими, новый якорь представлял большие удобства. Прежде всего, очевидно, что катушка в виде цилиндра, вращающегося вокруг своей оси, в механическом отношении выгоднее катушки, насаженной на вал и вращавшейся вместе с ним. По отношению к магнитным действиям якорь Сименса имел ту выгоду, что давал возможность очень просто увеличить число действующих магнитов (для этого достаточно было удлинить якорь и прибавить несколько новых магнитов). Машина с таким якорем давала гораздо более равномерный ток, так как цилиндр был плотно окружен полюсами магнитов. Но эти достоинства не компенсировали главного недостатка всех магнитоэлектрических машин – магнитное поле по-прежнему создавалось в генераторе с помощью постоянных магнитов.

 

Последнее изменение этой страницы: 2016-07-22

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...