Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Технология ферментных препаратов

Ферментные препараты, высокоактивные катализаторы различных биохимических процессов. Различают ферментные препараты животного, растительного и микробного происхождения. Препараты, полученные при поверхностном способе культивирования, имеют индекс П, при глубинном — Г.

В сельском хозяйстве используются для хорошей усвояемости пищи (т.к у травоядных животных усваивается только 60% пищи, отсюда меньший прирост скота), и для лечения ЖКТ (желуд-киш тракт) у животных.

Классы ферментов:

1. оксидоредуктазы – ферменты катализирующие окисл-восстановительные реакции (присоединение СО2, перенос Н2, перенос электролитов);

2. трансферазы – катализируют перенос целых атомных групировок с одного соединения на другое.

3. гидролазы – катализирует реакции гидролиза

4. лиазы – отщепление каких либо групп с образованием двойной связи или присоединение к месту разрыва двойной связи

5. изомеразы – реакции изомеризации

6. лигазы (синтетазы) – реакции синтеза сопряженные с разрыво связей АТФ.

Количество фермента можно определить по количеству конечного продукта или по количеству уменьшения субстрата.

За единицу активности фермента принимают то его количество, которое катализирует превращение одного микромоля субстрата в 1 минуту при заданных стандартных условиях - стандартная единица активности.

Протеолитические ферменты образуют класс пептидгидролаз. Их действие заключается в ускорении гидролиза пептидных связей в белках и пептидах. Важная их особенность - селективный характер действия на пептидные связи в белковой молекуле. Например, пепсин действует только на связь с ароматическими аминокислотами, трипсин - на связь между аргинином и лизином.

Пектолитические ферменты уменьшают молекулярную массу и снижают вязкость пектиновых веществ. Пектиназы делятся на две группы - гидролазы и трансэлиминазы. Гидралазы отщепляют метильные остатки или разрывают гликозидные связи. Трансэлиминазы ускоряют негидролитическое расщепление пектиновых веществ с образованием двойных связей. Применяются в текстильной промышленности (вымачивание льна перед переработкой), в виноделии - осветление вин, а также при консервировании фруктовых соков.

Целлюлолитические ферменты очень специфичны, их действие проявляется в деполимеризации молекул целлюлозы. Обычно используются в виде комплекса, доводящего гидролиз целлюлозы до глюкозы (в гидролизной промышленности). В медицинской промышленности их используют для выделения стероидов из растений, в пищевой - для улучшения качества растительных масел, в сельском хозяйстве - как добавки в комбикорма для жвачных животных.

30) Глубинный и поверхностный методы производства ферментов.

Глубинный метод производства ферментов.В этом случае микроорганизмы выращиваются в жидкой питательной среде. Технически более совершенен, чем поверхностный, так как легко поддается автоматизации и механизации. Концентрация фермента в среде при глубинном культивировании обычно значительно ниже, чем в водных экстрактах поверхностной культуры. Это вызывает необходимость предварительного концентрирования фильтрата перед его выделением.При глубинном культивировании продуцентов ферментов выделяют, как и в любом биотехнологическом процессе, 5 этапов.

1. Приготовление питательных сред зависит от состава компонентов. Некоторые предварительно измельчают, отваривают или гидролитически расщепляют. Готовые к растворению компоненты подают при постоянном помешивании в емкость для приготовления среды в определенной последовательности. Стерилизацию среды проводят либо путем микрофильтрации с помощью полупроницаемых мембран, либо при помощи высоких температур. Время обработки в этом случае зависит как от интенсивности фактора, так и от уровня обсемененности объекта. Стерилизуются также все коммуникации и аппараты. Воздух очищается до и после аэрирования. До - потому что содержит частицы пыли органической и неорганической природы, после - так как несет клетки продуцента.2. Получение засевного материала. Для засева питательной среды материал готовят также глубинным методом. Вид его зависит от продуцента: для грибов это мицелиальная вегетативная масса, для бактерий - молодая растущая культура на начальной стадии спорообразования. Получение посевного материала состоит в увеличении массы продуцента в 3-4 стадии. 3. Производственное культивирование. Биосинтез ферментов в глубинной культуре протекает в течение 2-4 суток при непрерывной подаче воздуха и перемешивании. Высокая концентрация питательных веществ на первых этапах могут тормозить рост биомассы продуцента, поэтому часто свежая среда или некоторые её компоненты вводятся в ферментер на стадии активного роста. Температурный оптимум находится в интервале 22-32оС. 4. Выделение. В мицелии трёхсуточной культуры обычно остается не более 15% ферментов. Остальные выделяются в окружающую клетки жидкую среду. В этом случае препараты ферментов выделяют из фильтратов после отделения биомассы.5. Получение товарной формы.

При поверхностном методе культура растет на поверхности твердой увлажненной питательной среды. Мицелий полностью обволакивает и довольно прочно скрепляет твердые частицы субстрата, из которого получают питательные вещества. Поскольку для дыхания клетки используют кислород, то среда должна быть рыхлой, а слой культуры-продуцента небольшим. Выращивание производственной культуры происходит обычно в асептических условиях, но среду и кюветы необходимо простерилизовать. Перед каждой новой загрузкой также необходима стерилизация оборудования. Преимущества поверхностной культуры: значительно более высокая конечная концентрация фермента на единицу массу среды, поверхностная культура относительно легко высушивается, легко переводится в товарную форму.

Посевной материал может быть трёх видов:

- культура, выросшая на твердой питательной среде;

- споровый материал;

- мицелиальная культура, выращенная глубинным способом.

В 3 этапа получают и посевную культуру. Сначала музейную культуру продуцента пересевают на 1 - 1.5 г увлажненных стерильных пшеничных отрубей в пробирку и выращивают в термостате до обильного спорообразования. Второй этап - аналогично, но в колбах, третий - в сосудах с 500 г среды. Основу питательной среды составляют пшеничные отруби, они создают необходимую структуру среды. Стерилизуют среду острым паром при помешивании (температура - 105-140 С, время 60-90 минут). После этого среду засевают и раскладывают ровным слоем в стерильных кюветах. Кюветы помещают в растильные камеры. Культивируют в течение 36-48 часов. Рост делится на 3 периода, примерно равных по времени. Для создания благоприятных условий роста и развития продуцента необходима аэрация и поддержание оптимальной влажности. Массу размельчают. Культуру высушивают до 10-12% влажности при температурах не выше 40С, не долее 30 минут.

Схема очистки сводится к следующему:

- освобождение от нерастворимых веществ;

- освобождение от сопутствующих растворимых веществ;

- фракционирование (как правило, хроматографическими методами).

Для выделения фермента из поверхностной культуры необходима экстракция. Как правило, экстраген - вода. При этом в раствор переходят сахара, продукты гидролиза пектиновых веществ и целлюлозы. Стадию выделения и очистки завершает сушка. После сушки препарат должен содержать не более 6-8% влаги, тогда он может в герметичной упаковке храниться до года без потери активности. Стандартизация ферментного препарата - доводка активности фермента до стандартной, соответствующей требованиям ГОСТ. Для этого используются различные нейтральные наполнители - крахмал, лактоза.

31) Иммобилизация ферментов. Общая характеристика иммобилизованных ферментов.

Сущность иммобилизации ферментов — прикрепление их в активной форме к нерастворимой основе или заключение в полупроницаемую мембранную систему. Прикрепление фермента к носителю осуществляется адсорбционно, химической связью или путем механического включения фермента в органический или неорганический гель. При этом допускается прикрепление фермента только за счет функциональных групп, не входящих в активный центр фермента и не участвующих в образовании фермент-субстратного комплекса. Носитель фермента или матрица может иметь вид зернистого материала, волокнистой структуры, пластинчатой поверхности, пленок или тканей, полых волокон, трубочек, капсул и т. д. Имеет значение размер частиц носителя. Важно иметь большую поверхность, поэтому рекомендуются небольшие частицы диаметром 0,1—0,2 мм. Носитель фермента может быть как природное вещество, так и синтетический полимер.

Преимущества иммобилизованных ферментов перед нативными предшественниками:

1. Гетерогенный катализатор легко отделим от реакционной среды, что дает возможность остановить реакцию в любой момент, использовать фермент повторно, а также получать чистый от фермента продукт.

2. Ферментативный процесс с использованием иммобилизованных ферментов можно проводить непрерывно, регулируя скорость катализируемой реакции и выход продукта.

3. Модификация фермента целенаправленно изменяет его свойства, такие как специфичность (особенно в отношении макромолекулярного субстрата), зависимость каталитической активности от рН, ионного состава и других параметров среды, стабильность к денатурирующим воздействиям.

4. Можно регулировать каталитическую активность иммобилизованных ферментов путем изменения свойств носителя действием физических факторов, таких как свет и звук. Иммобилизовать ферменты можно как путем связывания на нерастворимых носителях, так и путем внутримолекулярной или межмолекулярной сшивки белковых молекул низкомолекулярными бифункциональными соединениями, а также путем присоединения к растворимому полимеру.

32. Классификация носителей для ферментов.

По Дж. Порату (1974), идеальные материалы используемые для иммобилизации ферментов, должны обладать следующими свойствами:
1. Нерастворимостью;
2. Высокой химической и биологической стойкостью;
3. Значительной гидрофильностью;
4. Достаточной проницаемостью как для ферментов, так и для субстратов и продуктов реакции;
5. Способностью носителя легко активироваться.
В зависимости от природы носители делятся на:
1. Органические материалы;
2.Неорганические материалы.
Органические
полимерные носители можно разделить на 2 класса: а) природные; б) синтетические. В свою очередь, каждый из классов органических полимерных носителей подразделяется на группы в зависимости от их строения. Среди природныхполимеров выделяют: белковые; полисахаридные; липидные носители, а среди синтетических: полиметиленовые; полиамидные; полиэфирные носители. К преимуществам природных носителей следует отнести: 1. Доступность; 2. Полифункциональность; 3. Гидрофильность, а к недостаткамвысокую стоимость.
Из полисахаридов для иммобилизации наиболее часто используют: целлюлозу, декстран, агарозу и их производные.Для придания химической устойчивости их линейные цепи поперечно сшивают эпихлоргидрином. В полученные сетчатые структуры легко вводят различные ионогенные группировки.
Из природных аминосахаридов в качестве носителей для иммобилизации применяют хитин, который в значительных количествах накапливается в виде отходов в процессе промышленной переработки крабов и креветок. Хитин химически стоек и имеет хорошо выраженную пористую структуру. Среди белковпрактическое применение в качестве носителей нашли структурные протеины, такие как: кератин, фиброин, коллаген и желатин. Эти белки широко распространены в природе, поэтому доступны в больших количествах, дешёвы и имеют большое число функциональных групп для связывания фермента. Белки способны к биодеградации, что очень важно при конструировании иммобилизованных ферментов для биотехнологических целей.
Синтетические полимерные носители
включают полимеры на основе стирола, акриловой кислоты, поливинилового спирта, полиамидные и полиуретановые поли меры. Их преимущество: 1. Механическая прочность; 2. Возможность варьирования в широких пределах величины пор и введения различных функциональных групп. Синтетические полимеры воспроизведены в таких изделиях, как трубы, волокна, гранулы. Все эти свойства полезны для разных способов иммобилизации ферментов.
Носители неорганической природы
представляют собой материалы изготовленные из стекла, глины, керамики, графитовой сажи, а также силохромы и оксиды металлов. Их можно подвергать химической модификации, для чего носители покрывают плёнкой оксидов алюминия, титана, циркония. Или обрабатывают органическими полимерами. Основное преимущество неорганическихносителей: лёгкость регенерации. Подобно синтетическим полимерам неорганическим носителям можно придать любую форму и получать их с любой степенью пористости. Итак, к настоящему времени создано огромное число разнообразных носителей для иммобилизации ферментов. Однако для каждого индивидуального фермента, используемого в конкретном технологическом процессе, необходимо подбирать оптимальные варианты как носителя, так и условий и способов иммобилизации.

33) Методы иммобилизации ферментов.

Существуют два принципиально различных метода иммобилизации ферментов:
1.Без возникновения ковалентных связей между ферментом и носителем (физические методы иммобилизации);
2.С образованием ковалентной связи между ними (химические методы иммобилизации). Каждый из этих методов осуществляется разными способами.

Физические методы иммобилизации ферментовреализуются посредством:
1. Адсорбции ферментов на нерастворимых носителях;
2. Путём включения энзимов в поры поперечно сшитого геля;
3. Включение ферментов в полупроницаемые структуры (1.инкапсулирование; 2. включение ферментов в липосомы).
Адсорбция ферментов на нерастворимых носителях
. При адсорбционной иммобилизации белковая молекула удерживается на поверхности носителя за счёт электростатических, гидрофобных, дисперсионных взаимодействий и водородных связей. Эффективность адсорбции молекулы белка на носителе определяется пористостью носителя. Процесс адсорбции ферментов на нерастворимых носителях отличается крайней простотой и достигается при контакте водного раствора фермента с носителем при перемешивании. С этой целью раствор фермента смешивают со свежим осадком, например, гидроксида титана, и высушивают в мягких условиях. Активность фермента при таких условиях иммобилизации сохраняется практически на 100%. К недостаткам адсорбционного метода следует отнести невысокую прочность связывания фермента с носителем. При изменении условий иммобилизации может произойти десорбция фермента, его потеря и загрязнение продуктов. Существенно повысить прочность связывания фермента с носителем может предварительная его модификация (обработка ионами металлов, полимерами, белками, гидрофобными соединениями, монослоем липида).
Иммобилизация ферментов путём включения в гель.
Способ иммобилизации ферментов путём включения в трёхмерную структуру полимерного геля широко распространён благодаря своей простоте и уникальности. Метод применим для иммобилизации не только индивидуальных ферментов, но даже отдельных клеток. иммобилизацию ферментов в геле осуществляют двумя способами:
1. Фермент вводят в водный раствор мономера, а затем проводят полимеризацию, в результате которой возникает пространственная структура полимерного геля с включёнными в его ячейки молекулами фермента.
2. Фермент вносят в раствор уже готового полимера, который впоследствии переводят в гелеобразное состояние.
Для первого варианта используют гели: полиакриламида, поливинилового спирта, силикагеля. Для второго: гели крахмала, агар-агара, агарозы, фосфата кальция. Иммобилизация ферментов в гелях обеспечивает равномерное распределение энзима в объёме носителя. Все гели обладают высокой механической, химической, тепловой и биологической стойкостью и обеспечивает возможность многократного использования фермента, включённого в его структуру.

Иммобилизация ферментов в полупроницаемые структуры (1.инкапсулирование и 2.включение ферментов в липосомы).

Сущность этих способов иммобилизации заключается в отделении водного раствора фермента от водного раствора субстрата с помощью полупроницаемой мембраны, пропускающей низкомолекулярные молекулы субстратов, но задерживающей большие молекулы фермента. Разработано две модификации этого направления, которых представляют собой микрокапсулирование и включение ферментов в липосомы.
Метод инкапсулирования
разработан Т. Чангом в 1974 г. и состоит в том, что водный раствор фермента включается внутрь замкнутой микрокапсулы, стенки которой образованы полупроницаемым полимером. Один из механизмов возникновения мембраны на поверхности водных микрокапсул фермента заключается в реакции межфазной поликонсистенции двух соединений, одно из которых растворено с водой, а другое – в органической фазе. Достоинство метода микрокапсулирования – простота, универсальность, возможность многократного использования нативного фермента, поскольку он может быть отделён от непрореагировавшего субстрата процедурой простого фильтрования. Особенно существенно, что методом микрокапсулирования могут быть иммобилизованы не только индивидуальные ферменты, но и целые клетки и отдельные фрагменты клеток. К недостаткам метода следует отнести невозможность инкапсулированных ферментов осуществлять превращения высокомолекулярных субстратов.
Близким к инкапсулированию вариантом иммобилизации является метод включения водных растворов ферментов в липосомы, т. е. двойные липидные (жировые) шарики. Впервые данный метод был применён для иммобилизации ферментов Дж. Вайсманом и Дж. Сессом в 1970 году. Для получения липосом из растворов липида упаривают органический растворитель. Оставшуюся тонкую плёнку липидов выдерживают в водном растворе, содержащем фермент. В процессе выдержки происходит самовпитывание липидных структур липосомы, содержащих данный раствор фермента. Ферменты, иммобилизованные путём включения в структуру липосом, используют преимущественно в медицинских и биотехнологических целях.
Химические методы иммобилизации
ферментов. Представляют иммобилизацию ферментов путём образования новых ковалентных связей между ферментом и носителем – наиболее массовый способ получения промышленных биокатализаторов. В отличие от физических вариантов, эти методы иммобилизации обеспечивают прочную и необратимую связь фермента с носителем и сопровождаются стабилизацией молекулы энзима. Однако расположение фермента относительно носителя на расстоянии одной ковалентной связи создаёт трудности в осуществлении каталитического процесса. Ферменты отделяют от носителя с помощью вставки, в роли которой чаще всего выступают полифункциональные агенты бромциан, гидразин, глутаровый диальдегид. В этом случае структура иммобилизованного фермента включает носитель, вставку и фермент, соединённые между собой ковалентными связями.

34. энтомопатогенные препараты для сельского хозяйства;

1) на основе Бацилюс турингенсис получают энтобактерин-3, дендробацтллин, инсектин, токсобактерин.

Наибольшее распространение среди промышленно выпускаемых микробных патогенов получили бактериальные препараты. Их отличительными особенностями являются высокая вирулентность по отношению к насекомым-вредителям, безопасность для окружающей флоры и фауны, достаточно высокая скорость воздействия на вредителей и др. В настоящее время производятся препараты против более 130 видов насекомых.

Из всех энтомопатогенных бактерий наиболее исследованы грамположительные бактерии Bac.thuringiensis. Она не только разрушает насекомое, попадая внутрь, но и продуцирует ряд токсичных продуктов. Среди этих токсичных продуктов выделяют 4 компонента:

- α-экзотоксин, или фосфолипаза С, - продукт растущих клеток бактерий. Токсическое действие фермента связывают с индуцируемым им распадом незаменимых фосфолипидов в ткани насекомого, что приводит к гибели последнего.

- β-экзотоксин - накапливается в культуральной жидкости при росте клеток. Считают, что молекула β-токсина состоит из нуклеотида, связанного через рибозу и глюкозу с аллослизевой кислотой. Его действие, видимо, обусловлено ингибированием нуклеотидазы и ДНК-зависимой РНК-полимеразы, связанных с АТФ, что приводит к прекращению синтеза РНК. По сравнению с другими токсинами действует медленнее, в основном при переходе от одного цикла развития к другому. По наблюдениям, β-экзотоксин - мутаген, поражающий генетический аппарат особей.

- γ-экзотоксин - малоизученный компонент, неидентифицированный фермент (или группа ферментов).

δ-эндотоксин - параспоральный кристаллический эндотоксин. Образуется в процессе споруляции бактерии. Кристаллы в кишечнике восприимчивых насекомых распадается на молекулы протоксина. Протоксин под действием протеиназ распадается на токсические фрагменты и насекомое погибает. Такими протеазами обладают не все насекомые, отсюда и избирательность действия δ-токсина.

Все микробные патогены выпускаются в виде смачивающих порошков, паст, реже - гранул, эмульсии спор и кристаллов. Культивирование: глубинное при 28-30°С. Питательная среда: кормовые дрожжи, кукурузная мука, рН=6. Когда достигается 109 спор в грамме, материал высушивают.

2) грибной препарат боверин на основе гриба Баверия бассиана.

Энтомопатогенные препараты на основе микроскопических грибов вызывают у насекомых микозы. Грибы обладают рядом особенностей:

· поражение происходит через кутикулу;

· насекомые поражаются в фазе развития куколки и имаго;

· большая скорость роста и огромная репродуктивная способность, в виде спор могут длительное время находится в природе без снижения энтомопатогенной активности;

· высокая специфичность, вирулентность сильно зависит от штамма гриба.

Действие грибного препарата на насекомое начинается с проникновения споры в полость тела через кожные покровы. Попав в тело, спора прорастает в гифу, затем разрастается мицелий, от которого отчленяются конидии. Оказавшись в теле, конидии циркулируют в гемолимфе. Уже на этой стадии возможно поражение насекомого вследствие выделения некоторыми штаммами значительного количества токсинов. В отсутствие токсина мицелий постепенно заполняет все тело насекомого, прежде всего поражается мышечная ткань. Рост гриба продолжается до тех пор, пока все ткани не будут разрушены. Могут образовываться конидиеносцы, прорывающие кутикулу и обволакивающие мертвую личинку.

В промышленном производстве используются отдельные штаммы в основном трех родов: Beaveria, Metarrhizium, Entomophtora. Препарат безвреден для теплокровных животных и человека, не вызывет ожогов у растений.

Получать боверин можно используя как поверхностное, так и глубинное культивирование. При глубинном образуются гонидии, которые быстро растут, но они менее вирулентны (т.к. неустойчивы к высоким температура на стадии высушивания). ехнология получения боверина методом глубинного культивирования включает обычные стадии. Питательная среда содержит: дрожжи кормовые, крахмал, хлорид натрия, хлорид марганца, хлорид кальция (обеспечивает устойчивость конидий к неблагоприятным факторам). Культивируют при рН 4.5-5.6, температуре 25-28оС 3-4 суток в условиях постоянного перемешивания и аэрации. В среде необходимо также наличие аминного азота, так как его недостаток снижает скорость роста культуры. Культуральную жидкость подвергают сепарации и фильтрованию, после чего пасту сушат на распылительной сушке.

3) препараты на основе вирусов – вирин-ЭНШ, вирин-ЭКС и др.)

Из всех энтомопатогенных препаратов вирусные обладают наибольшей специфичностью по отношению к насекомому-хозяину. Они поражают не более одного вида. Их ярко выраженная специфичность обуславливает практическую безвредность вирусных препаратов для человека, флоры и фауны.

Вирусы отличает высокая устойчивость к неблагоприятным факторам окружающей среды, они способны сохранять активность в течение 10-15 лет, находясь вне насекомого. Заражение вирусом происходит при питании вредителя. Попавшие в кишечник тельца-включения при щелочных значениях рН разрушаются. Освобожденные вирионы проникают через стенку кишечника в клетки, где в ядрах происходит репликация вирусов. Высвободившиеся вирусы заражают другие клетки, что в итоге приводит к гибели насекомого. Отличительной особенностью вирусов является то, что они могут размножаться только в живой ткани. Это создает определенные трудности в организации промышленного производства, так как технология размножения вирусов должна быть связана с использованием живых насекомых-хозяев.

В нашей стране осуществляется выпуск трех вирусных энтомопатогенных препаратов: вирин-ЭКС (против капустной совки), ЭНШ (против непарного шелкопряда) и АББ (против американской белой бабочки).

Производство любого из вирусных препаратов начинают с разведения насекомого-хозяина на искусственных питательных средах, обеспечивающих их физиологически здоровое состояние. На определенной стадии развития ( обычно на стадии гусеницы) насекомых заражают, добавляя вирусную суспензию к корму. При этом инокулят предварительно получают от нескольких больных личинок. После заражения насекомых выдерживают в строго определенных условиях, обеспечивающих максимальное накопление вируса в тканях. Через 7-9 суток собирают мертвые и отмирающие личинки, подсушивают при температуре 33-35оС, измельчают механическим способом для вывода телец-включений из тканей. К полученной массе добавляют физиологический раствор или дистиллированную воду из расчета 1 мл на гусеницу, взвесь полученных тканей фильтруют.

35. Бактериальные удобрения;

В настоящее время выпускают такие бактериальные удобрения, как нитрагин, ризоторфин, азотобактерин, фосфобактерин, экстрасол. Технология получения препаратов клубеньковых бактерий

Отечественная промышленность выпускает два вида препаратов клубеньковых бактерий: нитрагин и ризоторфин. Оба препарата производятся на основе активных жизнеспособных клубеньковых бактерий из рода Rhizobium (аэробы). Эти бактерии в симбиозе с бобовыми культурами способны фиксировать свободный азот атмосферы, превращая его в соединения, легкоусвояемые растением. Фиксация атмосферного азота возможна только в клубеньках, образующихся на корнях растений. Возникают они при инфицировании корневой системы бактериями из рода Rhizobium. Заражение корневой системы происходит через молодые корневые волоски. После внедрения бактерии прорастают внутри них до самого основания в виде инфекционной нити. Бактерии, находящиеся в клубеньках, синтезируют ферментную систему с нитрогеназной активностью, восстанавливающую молекулярный азот до аммиака. Ассимиляция аммиака происходит, в основном, путем вовлечения его в ряд ферментативных превращений, приводящих к образованию глутамина и глутаминовой кислоты, идущих в дальнейшем на биосинтез белка. Нитрагин - Необходимо отметить, что важно подбирать штаммы, устойчивые к высушиванию. Для производства посевного материала исходную культуру клубеньковых бактерий выращивают на агаризованной среде, содержащей отвар бобовых семян, агар и сахароза, затем культуру размножают в колбах на жидкой питательной среде в течение 1-2 суток при 28-30оС и рН 6.5-7.5. На всех этапах промышленного культивирования применяют питательную среду, включающую такие компоненты, как меласса, кукурузный экстракт, минеральные соли в виде сульфатов аммония и магния, мел, хлорид натрия и двузамещенный фосфат калия. Готовую культуральную жидкость сепарируют и направляют на высушивание. Семена опудривают перед посевом.

Препарат клубеньковых бактерий может выпускаться и в виде ризоторфина. Для приготовления ризоторфина торф сушат при температуре не выше 100оС и размалывают в порошок. Наиболее эффективным способом стерилизации является облучение его гамма-лучами. Перед стерилизацией размолотый, нейтрализованный мелом и увлажненный до 30-40% торф расфасовывают в полиэтиленовые пакеты. Затем его облучают и заражают клубеньковыми бактериями, используя шприц, с помощью которого впрыскивается питательная среда, содержащая клубеньковые бактерии. Прокол после внесения бактерий заклеивается липкой лентой. Каждый грамм ризоторфина должен содержать не менее 2.5 млрд. жизнеспособных клеток с высокой конкурентоспособностью и интенсивной азотфиксацией. Препарат хранят при температуре 5-6оС и влажности воздуха 40-55%.

Азотобактерин - бактериальное удобрение, содержащее свободноживущий почвенный микроорганизм Azotobacter chroococcum, способный фиксировать до 20 мг атмосферного азота на 1 г использованного сахара. Внесенные в качестве удобрения в почву бактерии также выделяют биологически активные вещества (никотиновую и пантотеновую кислоты, пиридоксин, биотин, гетероауксин, гиббереллин и др.). Эти вещества стимулируют рост растений. Кроме того, продуцируемые Azotobacter фунгицидные вещества из группы анисомицина угнетают развитие некоторых нежелательных микроскопических грибов в ризосфере растения. Все виды Azotobacter строгие аэробы. Чувствительны к содержанию в среде фосфора и развиваются лишь при высоком его содержании в питательной среде. Азотфиксирующая способность культуры подавляется аммиаком (вообще содержание в среде связанного азота угнетает азотфиксацию). Стимулируют процесс фиксации азота соединения молибдена. Микробиологическая промышленность выпускает несколько видов азотобактерина: сухой, почвенный и торфяной. Технология получения сухого азотобактерина имеет много общего с технологией производства нитрагина.

Фосфобактерин - бактериальное удобрение, содержащее споры микроорганизма Bacillus megaterium var. phosphaticum. Бактерии обладают способностью превращать сложные фосфорорганические соединения (нуклеиновые кислоты, нуклеопротеиды и т.д.) и трудноусвояемые минеральные фосфаты в доступную для растений форму. Кроме этого бактерии вырабатывают биологически активные вещества (тиамин, пиридоксин, биотин, пантотеновую и никотиновую кислоты и др.), стимулирующие рост растения. Фосфобактерин относится к числу препаратов со стимулирующим эффектом.

Bacillus megaterium var. phosphaticum представляют собой мелкие, грамположительные аэробные спорообразующие палочки. В целом производство фосфобактерина похоже на производство азотобактерина и препаратов клубеньковых бактерий.

Кормовые антибиотики

· для борьбы с болезнями животных

· для борьбы с болезнями растений

· как стимуляторы роста животных

· при консервировании продуктов

· в научных исследованиях (в области биохимии, молекулярной биологии, генетике, онкологии).

Кормовые антибиотики положительно влияют на:

- обменные процессы в организме (активизируют функциональную деятельность органов пищеварения, гормональной системы, улучшают усвоение микро- и макроэлементов, витаминов и т.д.).

- активизируется резистентность организма ( в малых дозах регулируют состав кишечной микрофлоры. В кишечнике уменьшается содержание клостридий и других бактерий, образующих токсины и служащих конкурентами нормальной физиологической микрофлоры).

Вследствие этого молодые животные лучше развиваются и быстрее растут, снижается их заболеваемость и сокращается отход. При рациональном применении кормовых антибиотиков в условиях правильного кормления и содержания животных повышается прирост массы тела, снижается расход кормов на единицу продукции и себестоимость мяса, сокращается период откорма.

Кормовые препараты не используются в терапевтических целях и не вызывают перекрестной резистентности бактерий к антибиотикам, применяемыми в медицине; практически не всасываются в кровь из пищеварительного тракта; не меняют своей структуры в организме; не обладают антигенной природой способствующий возникновению алергии.

37.Видовое разнообразие миркофолоры пищеварительного тракта и ее функции.

Бифидобактерии , лактобактерии, Е coli,Бактероиды, Пептококки и пептостептококки, стафилококки (гемолитические ,плазмокоагулирующие)

Стафилококки (негемолитические , коагулазоотрицательные ), Эубактерии,клостридии, стрептококки, Дрожжеподобные грибы .

Функции:Синтез витаминов :В1,2,3,4,5,6,9,12,К.Обмен Жиров,Обмен Жирных Кислот ,Обмен Желчных Кислот , Водно-солевой Обмен, Тепловой Обмен, Участие синтезе некоторых незаменимых Аминокислот , Участие в усвоениее кальция , Стимуляция перестальтики .Регулирование Иммунитета , выведение токсинов .

38. Механизмы ,препятсвующие колонзации (заселению ) Патогенной Микрофлоры тела животного .

1.Экранируют слизистую оболочку кишечника, Лимитируя доступ им к поверхности мембран эпителиоцитов и к рецепторам на эпителиальных клетках

39. Препараты пробиотического действия для животноводства и птицеводства

Таблица. Типы пробиотических препаратов

I тип Монокомпонентные препараты, содержащие один штамм бактерий

II тип Самоэлиминирующиеся антагонисты, к которым относятся представители рода Bacillus, главным образом, В.subtilis, B.licheniformis

III тип Комбинированные препараты, состоящие из нескольких штаммов бактерий (поликомпонентные) или включающие добавки, усиливающие их действие

IV тип Иммобилизованные на сорбенте (сорбированные) живые бактерии

V тип Пробиотики в виде биопленки на твердом носителе

Последнее изменение этой страницы: 2016-07-22

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...