Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Миллионов долларов на решение грандиозной задачи

«Наша цель — расшифровать эпигеном ста или более различных типов человеческих клеток», — так Майсснер определяет свой нынешний проект. Он специализируется на метилировании ДНК, его коллега Брэдли Бернстейн занимается модификациями гистонов, и еще одна группа исследует различные РНК, действующие в эпигеноме.

Ученый осознает громадный объем этой задачи. «Над проектом „Геном человека“ на протяжении многих лет работало множество групп, — говорит Майсснер. — Но в нашем случае речь идет не об одном отдельном геноме, а о сотнях эпигеномов — и они устроены, конечно, гораздо сложнее».

Предстоит исследовать как минимум сто типов тканей, взятых у многочисленной группы людей. Для каждого из них сначала необходимо изолировать как можно больше клеток, однозначно идентифицируемых по типам. Эту стандартную сложную процедуру исследователи проводят на клетках кожи, поджелудочной железы, мозга и так далее. Затем последует трудоемкая фаза биохимического препарирования, а потом из-за индивидуальных различий второго кода тысячи клеток каждого типа будут автоматически анализироваться. Только таким образом при помощи сложных математических формул можно статистически определить, какие эпигенетические переключатели действительно типичны для той или иной ткани.

Причем автоматические анализаторы не просто производят многоступенчатый поиск генного текста, как раньше, они должны также распознать, где прикреплены метильные группы, какие химические довески несут гистоновые хвосты на самых разных участках генома и какие рибонуклеиновые кислоты клетка синтезирует именно для эпигенетической работы.

Однако Алекс Майсснер и его коллеги прекрасно подготовлены для выполнения этой задачи, что они доказали совсем недавно. В ведущем научном журнале «Нейчур» они опубликовали успешно выполненное ими картирование эпигенома 17 разных клеток мыши, которое содержало несколько любопытнейших — по крайней мере для специалистов — сюрпризов. Например, ученые показали, что стволовые клетки, долгое время находившиеся на искусственном вскармливании, эпигенетически поразительно похожи на раковые. Это важное указание на то, какие эпигенетические решения реализуются в хроматине при перерождении здоровой ткани. Ученые Института Бродов открыли также, что метилирование ДНК отключает многие гены не на их контрольных участках, как предполагалось ранее, а совсем в других местах, и многое другое.

 

Прежде чем начать картирование человеческого эпигенома, Майсснеру пришлось ждать запуска гораздо более крупного проекта, в который сегодня включена его группа: новая программа «Дорожная карта эпигеномики» стартовала 30 сентября 2008 года. Тогда Национальный институт здравоохранения США значительно повысил престиж эпигенетики как научной области. Его директор Илайас Зерхуни объявил, что до 2014 года для поддержки ряда ведущих исследовательских групп эпигенетиков в США и Канаде планируется выделить более 190 миллионов долларов.

Илайас Зерхуни надеется на получение «сравнительных данных, которые сможет использовать все научное сообщество, чтобы лучше понять, как функционирует эпигенетическая регуляция и как она воздействует на здоровье и болезни». Благодаря этому уже в ближайшие годы могут быть получены ответы на некоторые основополагающие вопросы: почему стволовая клетка идет по тому или иному пути развития? Какие переключатели должны задействовать генетики, чтобы превратить клетку кожи в нервную, а клетку соединительной ткани — в клетку миокарда и так далее? И какая эпигенетическая программа делает некоторые клетки злокачественными, неработоспособными или особенно восприимчивыми к болезням?

 

Совместно с группой Брэдли Бернстейна Майсснер получит приблизительно 15 миллионов долларов из общего котла Национального института здравоохранения США. Оба уже наняли новых сотрудников и отправились в «шоп-тур» — заказать для своих лабораторий несколько самых современных и дорогих геномных анализаторов. Наконец-то они начали работу, в результате которой подробная карта эпигеномов дополнит карту человеческих генов, представленную общественности Клинтоном, Вентером и Коллинзом в июне 2000 года.

На этом пути у них будет много попутчиков, поскольку Институт здравоохранения США финансирует исследования и в трех других учреждениях, картирующих эпигеномы клеток. Еще они поддерживают научные центры, которые разрабатывают новые приборы для эпигенетических опытов и обработки данных, а также исследовательские группы, работающие над обнаружением неизвестных пока эпигенетических переключателей. И наконец, Национальный институт здравоохранения финансирует группу, которая должна объединить и обработать все новые результаты.

В 2014 году ученые собираются продемонстрировать первые карты человеческих эпигеномов, которые точно покажут, где у второго кода многочисленных проанализированных тканей есть типичные особенности. Чрезвычайно амбициозный план, поскольку на данный момент ни один эпигеном человеческой клетки не расшифрован полностью. То, что Майсснер и компания вообще могут взяться за эту грандиозную задачу, связано прежде всего с головокружительным техническим прогрессом: лабораторные роботы для секвенирования, которые расшифровывают генный текст вместе с включателями и выключателями, становятся все быстрее и дешевле.

Всего несколько лет назад европейские исследователи столкнулись с большими трудностями в аналогичном проекте. Они запустили первый этап изучения человеческого эпигенома и в 2006 году все-таки опубликовали модели метилирования трех хромосом человека. Но затем им пришлось сдаться из-за недостаточных технических возможностей.

Сегодня перспектива куда благоприятнее. «Если все сложится удачно, секвенирование всего эпигенома одного типа клеток будет занимать только две-три недели», — признается Майсснер.

При условии достаточного количества приборов и денег такими темпами удастся уложиться в намеченные сроки. А поскольку техника будет совершенствоваться и дальше, Майсснер надеется закончить анализ первых ста типов тканей даже досрочно. «Тогда у нас еще осталось бы время для нового этапа, когда, например, все это с помощью скрининговых методов можно будет распространить на следующие четыреста популяций культур клеток», — говорит он. Ведь на первом этапе необходимо исследовать только небольшой набор самых важных тканей. Наряду со здоровыми, дифференцированными клетками, которых у человека насчитывается 200 типов, это стволовые клетки и клетки, играющие главную роль в разных заболеваниях.

Расширение работ во второй фазе, вероятно, приблизило бы исследователей к их настоящей цели. Они хотят лучше понять процесс дифференцирования клеток и развития болезней. Для этого ученые будут сравнивать второй код клеток, находящихся в разных фазах и на разных направлениях развития. Кроме того, будет выясняться, какие эпигенетические переключатели типичны для больной ткани.

Есть надежда, что под конец молекулярные биологи узнают о большей части решающих моментов в жизни клетки.

Эпигенетика меняет онкологию

Было время — меньше десяти лет назад, — когда даже некоторые дипломированные биологи не знали понятия «эпигенетика». Мне тоже как-то пришлось задать наивный вопрос во время одного интервью в японском Институте раковых исследований, когда руководитель лаборатории с заметной гордостью рассказывал мне о последнем высочайшем достижении — некоем эпигенетическом средстве, которое уже успешно проходит вторую фазу клинических испытаний на различных видах опухолей человека.

«А что такое эпигенетическое средство?» — спросил я и порадовался вежливости японцев, которые никогда не покажут, насколько малосведущим считают своего собеседника. Ответ прозвучал так: будущее лекарство блокирует гистондеацетилазы. То была одна из моих первых встреч с модификацией гистонов. Эти ферменты изменяют белки, которые всегда октетом образуют нуклеосомы — те самые «барабаны», на которые более или менее плотно наматываются нити ДНК.

Тогда это объяснение мне мало что открыло. А последовавшая за ним лекция стала, без сомнения, ключевым моментом, окончательно пробудившим во мне интерес ко второму коду. Я записал: гистондеацетилазы (HDAC) — ферменты, которые удаляют ацетильные группы с хвостов гистонов, в результате чего внезапно усиливается взаимное притяжение нуклеосомы и ДНК (гистоны упаковывают ДНК плотнее, чем прежде). Следствие: деактивируется контролируемый на этом участке ген. С помощью гистондеацетилаз, к которым относятся также продлевающие жизнь сиртуины, клетка участвует в принятии решения о том, какие участки ДНК она может считывать, а какие нет. И в зависимости от затронутого процессом гена это может даже привести к перерождению клетки.

До того момента я полагал: рак развивается потому, что одна из клеток обладает модифицированными генами, которые не способны функционировать или начинают выполнять неправильную функцию. Что, конечно, верно. Но это — не единственное возможное объяснение. Итак, я узнал, что рак вполне может иметь иную, эпигенетическую причину, когда сами гены не претерпевают изменений. Клетки становятся злокачественными, потому что биохимические переключатели постоянно включают «злые» или отключают «добрые» гены.

Для онкологии это открытие стало неожиданной удачей. Ибо, в отличие от генетических мутаций, изменения второго кода принципиально обратимы. К тому же они сравнительно легко поддаются фармакологическому лечению — нужно только найти правильные точки приложения и правильные лекарственные препараты.

Разумеется, эпигеномы клеток меняются с возрастом. По этой причине, например, однояйцевые близнецы со временем все меньше походят друг на друга. Это также одна из причин — наряду с накоплением генетических дефектов, — почему мы в старости больше предрасположены к таким заболеваниям, как рак. Каждая неконтролируемая эпигенетическая модификация повышает риск, что будет отключен хороший, защищающий от рака ген. Когда мы стареем, клетки, видимо, все чаще ошибочно отключают свои так называемые гены-супрессоры опухолей. Таким образом они лишают себя самого эффективного оружия против рака.

Ведь именно кодируемые этими генами белки распознают канцерогенные изменения, ежедневно появляющиеся во множестве здоровых клеток. Белки — супрессоры опухолей в этом случае исправляют изменения или, когда это невозможно, запускают апоптоз, программу самоуничтожения клетки. В этом случае клетка жертвует собой в интересах всего организма.

Но даже участвующие в этом «гены самоубийства» предварительно могут эпигенетически блокироваться, что оказывает такое же действие, как отключение генов — супрессоров опухолей. В обоих случаях клетки очень легко перерождаются, и если уж опухоль образовалась, то из-за неправильного второго кода она часто бывает особенно агрессивной и тяжело поддается лечению. Большинство обычных противораковых препаратов более или менее целенаправленно подталкивают раковые клетки к самоубийству. Но если система апоптоза или генной супрессии уже отключена эпигеномами, химиотерапевтические средства не смогут повредить раковым клеткам. Болезнь принимает неизлечимую форму.

Теперь я понимаю, почему японский онколог так радовался по поводу нового лекарства: блокируя гистондеацетилазы, это вещество частично настраивает программирование раковых клеток на доброкачественность. Оно активирует прежде отключенные гены и в конце концов дает понять равнодушным раковым клеткам, насколько они вредны. В ответ на это опухолевые клетки в идеальном случае самоуничтожаются, либо же до «самоубийства» их доведут традиционные противораковые медикаменты, которые снова начнут действовать.

Итак, новое средство обладает способностью непосредственно уничтожать некоторые злокачественные новообразования, а также помогает онкологам традиционными средствами подавить неизлечимые ранее опухоли. Но прежде всего это лекарство позволяет рассчитывать на необычайно широкий спектр действия. Поскольку оно поддерживает целительные процессы на многих уровнях, вероятно, со временем им можно будет лечить многие виды рака.

 

Почти все эпигенетики, с которыми я разговаривал в прошедшие годы, подчеркивают, что раковые исследования — одна из основных движущих сил новой дисциплины. «Наряду с открытием импринтинга успеху нашей дисциплины способствовала эпигенетика опухолей», — так считает, например, Бернхард Хорстхемке из Эссена. Уже в 1989 году он вместе со своей сотрудницей Валери Грегер доказал, что некоторые формы так называемых ретинобластом — злокачественных опухолей в сетчатке глаза — развиваются в результате отключения одного гена из-за прикрепившихся к нему метильных групп.

Работающий в Монреале израильский эпигенетик Моше Шиф высказывается совершенно недвусмысленно: «Эпигенетика играет важнейшую роль в развитии рака. Большинство карцином — эпигенетические заболевания». Йорн Вальтер из Саарландского университета заключает: «В области лечения рака эпигенетика, несомненно, изменит многое».

Во всем мире ученые ищут новые противораковые препараты, изменяющие эпигеном злокачественных клеток. Тот самый вежливый японец — один из них. Хотя его блокатор гистондеацетилаз все еще не вышел на рынок — в отличие от двух других, аналогично действующих веществ, которые уже применяются врачами-онкологами. Вальпроевая кислота, известная как средство против эпилепсии, успешно применяется в борьбе с определенными, особо тяжелыми формами рака груди. Вориностат тоже разрешен в США для лечения так называемых кожных лимфом. За этим названием скрывается рак лимфатических узлов, который развивается в коже. По-видимому, это средство настолько эффективно, что онкологи испытывают его также и в Германии, а в сочетании с другими препаратами — даже в лечении иных разновидностей опухолей, например рака легких.

Неудивительно, что практически все фармацевтические компании мира, занимающиеся исследованиями и имеющие онкологические лаборатории, проявляют интерес к блокаторам гистондеацетилаз, точно так же как и к другой группе эпигенетических лекарственных средств — блокаторам ДНК-метилтрансфераз (DNMT). Это те самые ферменты, которые прикрепляют метильные группы непосредственно к ДНК и таким образом отключают гены. Иногда они отключают также гены — супрессоры опухолей, следовательно, их подавление может способствовать тому, что раковые клетки станут менее злокачественными и будут легче поддаваться терапии.

Надежду на прогресс в лечении рака, связанную с новой группой медикаментов, подкрепляют два препарата, уже разрешенные к применению в США: азацитидин (или 5-азацитидин) и азадеоксицитидин (или 5-азадеоксицитидин). Как и вальпроевую кислоту, врачи довольно успешно применяли их против разных особо тяжелых форм рака груди.

Хотя подавление злокачественных опухолей эпигенетическими средствами только делает первые шаги, большинство специалистов возлагают на него большие надежды. А именно — на лежащий в основе этих препаратов новый и чрезвычайно широкий механизм действия. Итак, многочисленные примеры демонстрируют, что эпигенетика меняет терапию раковых заболеваний. Пройдет еще некоторое время, прежде чем станет окончательно ясно, как и где онкологи смогут наиболее эффективно модифицировать эпигеномы раковых клеток.

И может быть, действительно сбудется оптимистический прогноз Моше Шифа: «Эпигенетический путь — именно он определит будущее онкологии».

Последнее изменение этой страницы: 2016-07-22

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...