Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






АКТУАЛЬНОСТЬ ИССЛЕДОВАНИЯ РИСКА.

АКТУАЛЬНОСТЬ ИССЛЕДОВАНИЯ РИСКА.

В настоящее время безопасность в технологической сфере является важнейшей проблемой во всем мире. События последнего времени отчетливо показали человечеству, что научно-технический прогресс несет не только благо. Повышение интенсивности и эффективности хозяйственной деятельности неразрывно связано с усилением воздействия на окружающую среду. В обществе возникло беспокойство по поводу состояния окружающей среды, не оправданно интенсивного использования природных ресурсах, уменьшение биоразнообразия, растущая аварийность техносферы.

Сегодня становится ясно, что техногенную опасность со стороны промышленных объектов следует учитывать уже при разработке технологий, которые должны отвечать стратегическим требованиям энергетической экономической и экологической безопасности. После ряда аварий в ядерной энергетике и других потенциально-опасных отраслях промышленности было осознано, что бытовавшая ранее концепция безопасности, опирающаяся на принцип реагировать и выправлять, не отвечает требованиям времени.

Сегодня само общество заботится о снижении ущерба от опасных и вредных производственных факторов, путем внедрения соответствующих мер и средств защиты. Пассивность и сосредоточение внимания лишь на эмпирических данных поставила соответствующих специалистов в положение пожарной команды, лихорадочно реагирующей на кризисные ситуации. Выходом из создавшегося положения стала выдвинутая новая концепция «приемлемого риска», в основе которой лежит принцип предвидеть и предупреждать. Она основывается на знании природы объективно существующих опасностей, закономерностях появления и снижения обусловленного ими ущерба. Система безопасности должна быть ориентированна на объекты, подвергающиеся воздействию, т.е. на человека и окружающую среду, а не на источник. В подобной постановке система требует системного подхода, учета не только инженерных и экономических, но и экологических и социальных факторов. Для объективного решения проблемы уменьшения тяжести последствий аварии необходимо заранее оценивать опасность количественно. При этом используемые методы должны быть чувствительны к организационным и инженерно-техническим мероприятиям по снижению опасности.

Любая технология несет определенный риск для среды и общества. Особенно важен тщательный анализ риска для новых технологий, возникающих не в результате эволюционного развития, а в результате качественного скачка в науке и возникновением разрыва между новыми знаниями и предыдущим опытом.

Наука о риске сформировалась в последней четверти 20 века. Важнейшая ее особенность – междисциплинарный характер с теснейшим взаимодействием естественных и гуманитарных наук. Главная цель анализа риска состоит в снижении его до приемлемого уровня. Важно принимать во внимание следующие тезис, учитывающие жесткость регулирования:

1. Любой риск, который нельзя устранить, не создавая при этом дополнительных новых рисков, является неприемлемым и должен быть предотвращен или сведен к минимуму.

2. Если риск устранить нельзя – то его надо оценить и разработать эффективные способы его снижения и контроля. Отсюда следует принципиальный вывод – важнейшим элементом анализа риска является идентификация опасности, когда создается концептуальная модель

Применительно к чрезвычайным ситуациям в качестве идеализированной цели управления выступает обеспечение развития общества при условии его полной безопасности для жизни и здоровья людей. Как и всякий идеал данная цель недостижима.

В настоящее время в России осуществляется переход от регистрации свершившегося факта к осознанию необходимости использования методов анализа опасности для предварительного исследования объектов повышенного риска с целью предотвращения аварий. Однако исследование риска как научное направление находится пока лишь в стадии становления. Анализ риск должен охватывать все этапы – от создания до «захоронения» исчерпавшей себя технологии, вплоть до устранения вредных последствий ее использования. Методология оценки риска позволяет проводить качественные и количественные оценки, обеспечивать научную поддержку в процессе принятия решений

 

Пороговый уровень опасности. Понятие риска. Индивидуальный и технический риск. Экологический, социальный и экономический риск.

 

Краткий конспект лекций

 

Лекция №17 (2 ч.)

Лекция №18 (2 ч.)

ВИДЫ РИСКА.

Формирование опасных и чрезвычайных ситуаций - результат определенной совокупности факторов риска, порождаемых соответствующими источниками. Применительно к проблеме безопасности жизнедеятельности таким событием может быть ухудшение здоровья или смерть человека, авария или катастрофа технической системы или устройства, загрязнения или разрушение экологической системы, гибель группы людей или возрастания смертности населения, материальный ущерб от реализовавшихся опасностей или увеличения затрат на безопасность. Каждое нежелательное событие может возникнуть по отношению к определенной жертве - объекту риска. Соотношение объектов риска и нежелательных событий позволяет различать индивидуальный, технический, экологический, социальный и экономический риск. Индивидуальный риск обусловлен вероятностью реализации потенциальных опасностей при возникновении опасных ситуаций.

Его можно определить по числу реализовавшихся факторов риска: где Rи - индивидуальный риск; P - число пострадавших (погибших) в единицу времени t от определенного фактора риска f; L - число людей, подверженных соответствующему фактору риска f в единицу времени t. Индивидуальный риск может быть добровольным, если он обусловлен деятельностью человека на добровольной основе, и вынужденным, если человек подвергается риску в составе части общества (например, проживание в экологически неблагоприятных регионах, вблизи источников повышенной опасности).

Технический риск- комплексный показатель надежности элементов техносферы. Он выражает вероятность аварии или катастрофы при эксплуатации машин, механизмов, реализации технологических процессов, строительстве и эксплуатации зданий и сооружений:

где Rт - технический риск; DT - число аварий в единицу времени t на идентичных технических системах и объектах; T - число идентичных технических систем и объектов, подверженных общему фактору риска f.

Экологический риск выражает вероятность экологического бедствия, катастрофы, нарушения дальнейшего нормального функционирования и существования экологических систем и объектов в результате антропогенного вмешательства в природную среду или стихийного бедствия. Нежелательные события экологического риска могут проявляться как непосредственно в зонах вмешательства, так и за их пределами:


где RО - экологический риск; DO - число антропогенных экологических катастроф и стихийных бедствий в единицу времени t; O - число потенциальных источников экологических разрушений на рассматриваемой территории. Масштабы экологического риска оцениваются процентным соотношением площади кризисных или катастрофических территорий DS к общей площади рассматриваемого биогеоценоза S:

.

Дополнительным косвенным критерием экологического риска может служить интегральный показатель экологичности территории предприятия, соотносимой с динамикой плотности населения (численности работающих):

, где ОT - уровень экологичности территории; DL - динамика плотности населения (работающих); S - площадь исследуемой территорий; DM - динамика прироста численности населения (работающих) в течение периода наблюдения t: DM = G+F - U- V, где G,F,U,V - соответственно численность родившихся за наблюдаемый период, прибывших в данную местность на постоянное местожительство, умерших и погибших, выехавших в другую местность на постоянное местожительство (уволившихся). В этой формуле разность GU характеризует естественный, а FV - миграционный прирост населения на территории (текучесть кадров). Положительные значения уровней экологичности позволяют разделять территории по степени экологического благополучия и, наоборот, отрицательные значения уровней - по степени экологического бедствия. Кроме того, динамика уровня экологичности территории позволяет судить об изменении экологической ситуации на ней за длительные промежутки времени, определить зоны экологического бедствия (демографического кризиса) или благополучия.

Социальный риск характеризует масштабы и тяжесть негативных последствий чрезвычайных ситуаций, а также различного рода явлений и преобразований, снижающих качество жизни людей. По существу - это риск для группы или сообщества людей. Оценить его можно, например, по динамике смертности, рассчитанной на 1000 человек соответствующей группы:, , где RС - социальный риск; C1 - число умерших в единицу времени t (смертность) в исследуемой группе в начале периода наблюдения, например до развития чрезвычайных событий; C2 - смертность в той же группе людей в конце периода наблюдения, например на стадии затухания чрезвычайной ситуации; L - общая численность исследуемой группы.

Экономический риск определяется соотношением пользы и вреда, получаемых обществом от рассматриваемого вида деятельности:

, где RЭ - экономический риск, %; В - вред обществу от рассматриваемого вида деятельности; П - польза. В общем виде В= Зб+У , где Зб - затраты на достижение данного уровня безопасности; У - ущерб, обусловленный недостаточной защищенностью чело­века и среды его обитания от опасностей. Чистая польза, т.е. сумма всех выгод (в стоимостном выражении), получаемых обществом от рассматриваемого вида деятельности: П=Д - Зб - В>0 или П=Д - Зп - Зб - У>0, где Д - общий доход, получаемый от рассматриваемого вида деятельности; Зп - основные производственные затраты. Формула экономически обоснованной безопасности жизнедеятельности имеет вид
У < Д - ( Зп + Зб ).

В условиях хозяйственной деятельности необходим поиск оптимального отношения затрат на безопасность и возможного ущерба от недостаточной защищенности. Найти его можно, если задаться некоторым значением реально достижимого уровня безопасности производства Кбп. Эту задачу можно решить методом оптимизации. Использование рассматриваемых видов риска позволяет выполнять поиск оптимальных решений по обеспечению безопасности, как на уровне предприятия, так и на макроуровнях в масштабах инфраструктур. Для этого необходимо выбирать значения приемлемого риска. Приемлемый риск сочетает в себе технические, экологические, социальные аспекты и представляет некоторый компромисс между приемлемым уровнем безопасности и экономическими возможностями его достижения, т.е. можно говорить о снижении индивидуального, технического или экологического риска, но нельзя забывать о том, сколько за это придется заплатить и каким в результате окажется социальный риск.

 

Пестициды.

Применение пестицидов - химических средств борьбы с сорняками (гербициды и дефолианты), грибковыми заболеваниям (фунгициды) и насекомыми-вредителями (инсектициды) - наиболее интенсивными темпами началось в 1940-х гг. По данным статистики, в 1970 г. в мире было синтезировано около 0,5 млн. т пестицидов, а в 1980 г. их производство только в четырех странах (США, ФРГ, Япония и Италия) превысило 1,7 млн. т.

Особенно эффективными средствами борьбы с насекомыми-вредителями оказались хлорорганические соединения алифатического и ароматического рядов.

По масштабам производства и использования в сельском хозяйстве первое место среди других пестицидов вплоть до 1980-х гг занимали ДДТ и линдан. Следствием этого стало повсеместное загрязнение всех объектов окружающей среды остаточными количествами хлорорганических веществ. Положение наглядно характеризуется тем фактом, что даже в снежном покрове Антарктиды в настоящем времени накопилось более 3000 т ДДТ.

После признания опасности ДДТ для живых организмов во многих промышленно-развитых странах в 1970-х и в начале 1980-х годов было введено резкое ограничение или даже полное запрещение применения этого инсектицида. Однако мировое потребление ДДТ и линдана сколько-нибудь заметно не уменьшилось из-за роста их использования в странах Латинской Америки, Африки и Азии.

После запрета на использование подавляющего большинства полихлорированных органических пестицидов им на смену пришли сельскохозяйственные ядохимикаты, принадлежащие к другим классам органических соединений, в частности, производные тиофосфорной кислоты.

Полихлорированные бифенилы

Как и хлорорганические пестициды, полихлорированные бифенилы (ПХБ) относятся к продуктам, промышленное производство которых дало значительный экономический эффект, но и в конечном счете нанесло тяжелейший удар по биосфере, оказавшийся фатальным для некоторых биологических видов. Выпускаемые промышленностью ПХБ являются смесью множества индивидуальных соединений, содержащих различное число и атомов хлора:

Применение ПХБ основано на их химической инертности, негорючести, стабильности до температур порядка 500 °С и высокой диэлектрической постоянной. ПХБ используются в качестве пластификатора при производстве пластмасс (главным образом - поливинилхлорида), нитроцеллюлозных лаков, копировальной бумаги (примерно 12 г ПХБ на 1 кг бумаги).

ПХБ применяются как электроизоляционная жидкость в конденсаторах, в трансформаторах как теплоноситель. Кроме того, большие количества ПХБ применялись в качестве фунгицидов для защиты древесины от микробиологического разрушения, как смазочные материалы и добавки в судовые и другие краски. Получают ПХБ чаще всего газофазным хлорированием бифенила в присутствии хлорного железа как катализатора.

За счет высокой инертности ПХБ их абиотическая минерализация в окружающей среде происходит очень медленно. То же самое относится и к энзиматическим процессам. Наименее устойчивы по отношению к ферментативному окислению ПХБ с малым содержанием атомов хлора. Поэтому в водных экосистемах по мере перехода от низших звеньев трофических цепей к высшим наблюдается накопление высокохлорированных веществ.

ДЕРЕВО ОТКАЗОВ - ДО (FAULT TREE ANALYSIS - FTA)

Тщательному анализу причин отказов и выработке мероприятий, наиболее эффективных для их устранения, способствует построение дерева отказов и неработоспособных состояний. Такой анализ проводят для каждого периода функционирования, каждой части или системы в целом.

Дерево отказов (аварий, происшествий, последствий, нежелательных событий, несчастных случаев и пр.) лежит в основе логико-вероятностной модели причинно-следственных связей отказов системы с отказами ее элементов и другими событиями (воздействиями); при анализе возникновения отказа состоит из последовательностей и комбинаций нарушений и неисправностей, и таким образом оно представляет собой многоуровневую графологическую структуру причинных взаимосвязей, полученных в результате прослеживания опасных ситуаций в обратном порядке, для того чтобы отыскать возможные причины их возникновения.

Ценность дерева отказов заключается в следующем:

- анализ ориентируется на нахождение отказов;

- позволяет показать в явном виде ненадежные места;

- обеспечивается графикой и представляет наглядный материал для той части работников, которые принимают участие в обслуживании системы;

- дает возможность выполнять качественный или количественный анализ надежности системы;

- метод позволяет специалистам поочередно сосредотачиваться на отдельных конкретных отказах системы;

- обеспечивает глубокое представление о поведении системы и проникновение в процесс ее работы;

- являются средством общения специалистов, поскольку они представлены в четкой наглядной форме;

- помогает дедуктивно выявлять отказы;

- облегчает анализ надежности сложных систем.

Главное преимущество дерева отказов (по сравнению с другими методами) заключается в том, что анализ ограничивается выявлением только тех элементов системы и событий, которые приводят к данному конкретному отказу системы или аварии.

Недостатки дерева отказов состоят в следующем:

- реализация метода требует значительных затрат средств и времени;

- дерево отказов представляет собой схему булевой логики, на которой показывают только два состояния: рабочее и отказавшее;

- трудно учесть состояние частичного отказа элементов, поскольку при использовании метода, как правило, считают, что система находится либо в исправном состоянии, либо в состоянии отказа;

- трудности в общем случае аналитического решения для деревьев, содержащие резервные узлы и восстанавливаемые узлы с приоритетами, не говоря уже о тех значительных усилиях, которые требуются для охвата всех видов множественных отказов;

- требует от специалистов по надежности глубокого понимания системы и конкретного рассмотрения каждый раз только одного определенного отказа;

- дерево отказов описывает систему в определенный момент времени (обычно в установившемся режиме), и последовательности событий могут быть показаны с большим трудом, иногда это оказывается невозможным. Это справедливо для систем, имеющих сложные контуры регулирования.

Чтобы отыскать и наглядно представить причинную взаимосвязь с помощью дерева отказов, необходимы элементарные блоки, подразделяющие и связывающие большое число событий. Имеется два типа блоков: логические символы (знаки) и символы событий. Логические символы (знаки) связывают события в соответствии с их причинными взаимосвязями. Логический символ (знак) может иметь один или несколько входов, но только один выход, или выходное событие. Обозначения логических знаков приведены в таблице.

 

строка Символ логического знака Название логического знака Причинная взаимосвязь
И Выходное событие происходит, если все входные события случаются одновременно
ИЛИ Выходное событие происходит, если случается любое из входных событий
«Запрет» Наличие входа вызывает наличие выхода только тогда когда имеет место условное событие
«приоритетное И» Выходное событие случается, когда входные события случаются в определенном порядке
«Исключающее ИЛИ» Выходное событие происходит, когда случается одно, но не оба входных событий
«m из n» голосование или выборка Выходное событие происходит, когда случается m из n входных событий

Логический знак "И" (схема совпадения). Выходное событие логического знака И наступает в том случае, если все входные события появляются одновременно. События, входные по отношению к операции И, должны формулироваться так, чтобы второе было условным по отношению к первому, третье условным по отношению к первому и второму, а последнее - условным ко всем предыдущим. Кроме того, по крайней мере, одно из событий должно быть связано с появлением выходного события. Знак И применяется если имеются несколько причин, которые должны появиться одновременно, выходы операции должны отвечать на вопрос: "Что необходимо для появления выходного события?"

Логический знак "ИЛИ" (схема объединения). Выходное событие логического знака ИЛИ наступает в том случае, если имеет место любое из входных событий. События, входные по отношению к операции ИЛИ, должны формулироваться так, чтобы они вместе исчерпывали все возможные пути появления выходного события. Кроме того, любое из входных событий должно приводить к появлению выходного события. Входы операции отвечают на вопрос: "Какие события достаточны для появления выходного события?".

Порядок применения логических знаков И и ИЛИ. Для любого события, подлежащего дальнейшему анализу, вначале рассматриваются все возможные события, являющиеся входами операций ИЛИ, затем входы операций И. Это справедливо как для головного события, так и для любого события, анализ которого целесообразно продолжить.

Событие "возникновение пожара" имеет место, если два события - "утечка горючей жидкости" И "очаг воспламенения вблизи горючей жидкости", происходят одновременно. Последнее (критическое) событие случается, если происходит одно из двух событий - "наличие искры" ИЛИ "курящий рабочий". Большинство специальных логических символов можно заменить комбинацией символов И и ИЛИ.

 

Символы событий.

строка Символ события Содержание события
Исходное событие, обеспеченное достаточными данными
Событие, недостаточно детально разработанное
Событие, вводимое логическим элементом
Условное событие, используемое с логическим знаком «запрет»
Событие которое может произойти или не произойти
Символ перехода

 

Прямоугольный блок обозначает событие отказа, которое возникает в результате более элементарных, исходных отказов, соединенных с помощью логических элементов. Круглый блок обозначает исходный отказ (исходное событие) отдельного элемента (в пределах данной системы или окружающей среды), который определяет таким образом разрешающую способность данного дерева отказов. Для того чтобы получить количественные результаты с помощью дерева отказов, круглые блоки должны представлять события, для которых имеются данные по надежности и они называются исходными событиями. "Отказ клапана из-за износа" может быть примером исходного отказа элемента и помещается в круг. Обычно такое событие обусловливается определенным элементом и, когда оно происходит, этот элемент необходимо отремонтировать или заменить. Ромбы используются для обозначения детально не разработанных событий в том смысле, что детальный анализ не доведен до исходных типов отказов в силу отсутствия необходимой информации, средств иди времени. "Авария из-за саботажа или диверсии" является примером детально не разработанного события. Часто такие события не увеличиваются при количественном анализе. Они включаются на начальном этапе и их присутствие служит показателем глубины и ограничений данного исследования.

Из рисунка видно, что отказ "избыточный ток в цепи" может быть вызван исходным событием "короткое замыкание" или событием, не разработанным детально - "пульсация напряжения в цепи". Если есть необходимость в более детальной разработке события "пульсация напряжения в цепи", то следует использовать прямоугольник, для того чтобы показать, что событие не разработано до более элементарного уровня. Затем необходимо вернуться назад и проанализировать, например, такие элементы, как генератор или другие аппараты в данной схеме.

При построении дерева отказов используются следующие правила:

1. Абстрактные события заменяются менее абстрактными, например событие "электродвигатель работает слишком долго" на событие "ток через электродвигатель протекает слишком долго".

2. Разделять события на более элементарные, например событие "взрыв бака" заменять на событие "взрыв за счет переполнения" или "взрыв в результате реакции, вышедшей из-под контроля".

3. Точно определять причины событий, например событие "вышедшее из-под контроля" заменять на событие "избыточная подача" или "прекращение охлаждения".

4. Связывать инициирующие события с событием типа "отсутствие защитных действий", например событие "перегрев" заменять на событие "отсутствие охлаждения" в сочетании с событием "нет выключения системы".

5. Отыскивать совместно действующие причины событий, например, событие "пожар" заменять на два события "утечка горючей жидкости" и "искрение реле".

6. Точно указывать место отказа элемента, например, событие "нет напряжения на электродвигателе" заменять на событие "нет тока в кабеле"; другой пример: событие "нет охлаждающей жидкости" заменять на событие "главный клапан закрыт" в сочетании с событием "нет открытия отводного клапана".

Основной принцип построения дерева отказов заключается в последовательной постановке вопроса: по каким причинам может произойти отказ системы, т.е. анализ осуществляется "сверху вниз". Обычно предполагается, что исследователь, прежде чем приступить к построению дерева отказов, тщательно изучает систему. Поэтому описание системы должно быть частью документации, составленной в ходе такого изучения.

Процедура построения дерева отказов включает, как правило, следующие этапы:

1. Определение нежелательного (завершающего) события в рассматриваемой системе.

2. Тщательное изучение возможного поведения и предполагаемого режима использования системы.

3. Определение функциональных свойств событий более высокого уровня для выявления причин тех или иных неисправностей системы и проведение более глубокого анализа поведения системы с целью выявления логической взаимосвязи событий более низкого уровня, способных привести к отказу системы.

4. Собственно построение дерева отказов для логически связанных событий на входе. Эти события должны определяться в терминах идентифицируемых независимых первичных отказов.

Чтобы получить количественные результаты для завершающего нежелательного события, необходимо задать вероятность отказа, коэффициент неготовности, интенсивность отказов, интенсивность восстановлений и другие показатели, характеризующие первичные события, при условии, что события дерева отказов не являются избыточными (не приводящими к аварии).

Построение дерева и анализ исследуемого объекта с его использованием производят следующим образом.

1. Определяют аварийное (предельно опасное, конечное) событие, которое образует вершину дерева. Данное событие четко формулируют, оговаривают условия его появления, дают признаки его точного распознания. Например, для объектов химической технологии к таким событиям относятся: разрыв аппарата, пожар, выход реакции из-под контроля и др. Определяют возможные первичные и вторичные отказы, которые могут вызвать головное событие, рассматривают их комбинации.

2. Используя стандартные символы событий и логические символы, дерево строят в соответствии со следующими правилами:

а) конечное (аварийное) событие помещают вверху (уровень 1);

б) дерево состоит из последовательности событий, которые ведут к конечному событию;

в) последовательности событий образуются с помощью логических знаков И, ИЛИ и др.;

г) событие над логическим знаком помещают в прямоугольнике, а само событие описывают в этом прямоугольнике;

д) первичные события (исходные причины) располагают снизу.

3. Квалифицированные эксперты проверяют правильность построения дерева. Это позволяет исключить субъективные ошибки разработчика, повысить точность и полноту описания объекта и его действия.

4. Определяют минимальные аварийные сочетания и минимальную траекторию для построенного дерева. Первичные и неразлагаемые события соединяются с событиями первого уровня маршрутами (ветвями). Сложное дерево имеет различные наборы исходных событий, при которых достигается событие в вершине, они называются аварийными сочетаниями (сечениями) или прерывающими совокупностями событий. Минимальным аварийным сочетанием (МАС) называют наименьший набор исходных событий, при которых возникает событие в вершине. Полная совокупность МАС дерева представляет собой все варианты сочетаний событий, при которых может возникнуть авария. Минимальная траектория - наименьшая группа событий, при появлении которых происходит авария.

5. Качественно и количественно исследуют дерево аварий с помощью выделенных минимальных аварийных сочетаний и траекторий. Качественный анализ заключается в сопоставлении различных маршрутов от начальных событий к конечному и определении критических (наиболее опасных) путей, приводящих к аварии. При количественном исследовании рассчитывают вероятность появления аварии в течение задаваемого промежутка времени по всем возможным маршрутам.

6. Разрабатывают рекомендации по введению изменений в объекте, системах контроля и управления для улучшения показателей безаварийности. В зависимости от конкретных целей анализа, деревья могут быть построены для любых видов отказов - первичных, вторичных и инициированных отказов.

 

ДЕРЕВО СОБЫТИЙ - ДС.

Дерево событий - алгоритм рассмотрения событий, исходящих от основного события (аварийной ситуации).

Дерево событий (ДС) используется для определения и анализа последовательности (вариантов) развития аварии, включающей сложные взаимодействия между техническими системами обеспечения безопасности. Вероятность каждого сценария развития аварийной ситуации рассчитывается путем умножения вероятности основного события на вероятность конечного события. При его построении используется прямая логика. Все значения P очень малы. Дерево не дает численных решений. ПРИМЕР. Допустим, путем выполнения ПАО было выявлено, что критической частью реактора, т.е. подсистемой, с которой начинается риск, является система охлаждения реактора; таким образом, анализ начинается с просмотра последовательности возможных событий с момента разрушения трубопровода холодильной установки, называемого инициирующим событием, вероятность которого равна PA, т.е. авария начинается с разрушения (поломки) трубопровода - событие A. Далее анализируются возможные варианты развития событий (B, C, D и E), которые могут последовать за разрушением трубопровода.

На рисунке изображено дерево исходных событий, отображающее все возможные альтернативы. На первой ветви рассматривается состояние электрического питания. Если питание есть, следующей подвергается анализу аварийная система охлаждения активной зоны реактора (АСОР). Отказ АСОР приводит к расплавлению топлива и к различным, в зависимости от целостности конструкции, утечкам радиоактивных продуктов.

 
 

Для анализа с использованием двоичной системы, в которой элементы либо выполняют свои функции, либо отказывают, число потенциальных отказов равно 2N-1, где N - число рассматриваемых элементов. На практике исходное дерево можно упростить с помощью инженерной логики и свести к более простому дереву, изображенному в нижней части рис. В первую очередь представляет интерес вопрос о наличии электрического питания. Вопрос заключается в том, какова вероятность PB отказа электропитания и какое действие этот отказ оказывает на другие системы защиты. Если нет электрического питания, фактически никакие действия, предусмотренные на случай аварии с использованием для охлаждения активной зоны реактора распылителей, не могут производиться. В результате упрощенное дерево событий не содержит выбора в случае отсутствия электрического питания, и может произойти большая утечка, вероятность которой равна PAхPB. Рассмотрев все варианты дерева, можно получить спектр возможных утечек и соответствующие вероятности для различных последовательностей развития аварии. Верхняя линия дерева является основным вариантом аварии реактора. При данной последовательности предполагается, что трубопровод разрушается, а все системы обеспечения безопасности сохраняют работоспособность.

 

ДЕРЕВО РЕШЕНИЙ.

Дерево решений является разновидностью дерева событий. В дереве событий рабочие состояния системы не рассматриваются, так что сумма вероятностей всех событий не равна единице. В дереве решений все возможные состояния системы необходимо выразить через состояния элементов. Таким образом, все состояния системы взаимно увязаны, и их вероятность в сумме должна равняться единице. Деревья решений могут использоваться, если отказы всех элементов независимы или имеются элементы с несколькими возможными состояниями, а также есть односторонние зависимости. Они не могут использоваться при наличии двусторонних зависимостей и не обеспечивают логического анализа при выборе начальных событий.

На рисунке показана система последовательно соединенных элементов, которая включает насос и клапан, имеющие соответственно вероятности безотказной работы 0,98 и 0,95, а также приведено дерево решений для этой системы. Следует отметить, что согласно принятому правилу верхняя ветвь соответствует желательному режиму работы системы, а нижняя - нежелательному. Дерево решений читается слева направо. Если насос не работает, система отказывает независимо от состояния клапана. Если насос работает, с помощью второй узловой точки изучается вопрос, работает ли клапан. Вероятность безотказной работы системы: 0,98х0,95=0,931. Вероятность отказа: 0,98х(0,05+0,02)=0,069, а суммарная вероятность двух состояний системы равна единице. Этот результат можно получить другим способом с помощью таблицы решения, которая для насоса и клапана имеет вид:

Состояние насоса Состояние клапана Вероятность работоспособного состояния Вероятность отказа системы
Работает Работает 0,98х0,95  
Отказ Работает   0,02х0,95
Работает Отказ   0,98х0,05
Отказ Отказ   0,02х0,05
Суммарная величина 0,931 0,069

 

АКТУАЛЬНОСТЬ ИССЛЕДОВАНИЯ РИСКА.

В настоящее время безопасность в технологической сфере является важнейшей проблемой во всем мире. События последнего времени отчетливо показали человечеству, что научно-технический прогресс несет не только благо. Повышение интенсивности и эффективности хозяйственной деятельности неразрывно связано с усилением воздействия на окружающую среду. В обществе возникло беспокойство по поводу состояния окружающей среды, не оправданно интенсивного использования природных ресурсах, уменьшение биоразнообразия, растущая аварийность техносферы.

Сегодня становится ясно, что техногенную опасность со стороны промышленных объектов следует учитывать уже при разработке технологий, котор

Последнее изменение этой страницы: 2016-07-22

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...