Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Вариационные принципы и математические модели

Общая схема принципа Гамильтона.

Пусть имеется механическая система, формального или строгого определения которой пока давать не будем, имея в виду, что все взаимодействия между элементами такой системы определяются законами механики (один из простейших примеров, система «шарик – пружина»). Ведем понятие обобщенных координат , полностью определяющих положение механической системы в пространстве. Величина может быть декартовой координатой (например, координата в системе «шарик – пружина»), радиусом-вектором, угловой координатой, набором координат материальных точек, составляющих систему и т.д. Величину естественно называть обобщенной скоростью механической системы в момент времени . Набор величин и определяет состояние механической системы во все моменты времени.

Для описания механической системы вводится функция Лагранжа, которая, в простейших случаях, имеет явный смысл и записывается в следующем виде

, (1)

где и - кинетическая и потенциальная энергии соответственно.

Введем величину , называемой действием:

. (2)

Интеграл (2), очевидно, является функционалом от обобщенной координаты , т.е. функции , заданной на отрезке , он ставит в соответствие некоторое число (действие).

Принцип Гамильтона для механической системы гласит: если система движется по законам механики, то - стационарная функция для , или

. (3)

Фигурирующая в принципе наименьшего действия (3) функция - некоторая пробная функция, обращающаяся в ноль, в моменты и удовлетворяющая тому условию, что - возможная координата данной системы (в остальном произвольна).

Смысл принципа (3) в том, что из всех априори мыслимых (допускаемых) траекторий (движений) системы между моментами выбирается (реализуется) движение, доставляющее минимум функционалу действие (отсюда и происходит название принципа). Функция называется вариацией величины .

Итак, схема применения принципы Гамильтона (3) для построения моделей механических систем состоит в следующем: определяются обобщенные координаты и обобщенные скорости системы, строятся функция Лагранжа и функционал действия , минимизация которого на вариациях координаты и дает искомую модель.

Предварительные сведения о процессах теплопередачи.

Тепловая энергия или тепло – это энергия хаотичного движения атомов или молекул вещества. Обмен теплом между различными участками называется теплопередачей, а сами материалы, обладающие хорошо выраженным свойством теплопередачи, - теплопроводными. К ним относятся, например, металлы, в которых тепловая энергия переносится в основном свободными электронами, некоторыми газами и т.д. Процессы передачи тепла рассматриваются в условиях так называемого локального термодинамического равновесия (ЛТР). Понятие ЛТР для газов вводится при , т.е. когда длина свободного пробега частиц вещества много меньше характерных размеров рассматриваемого объекта (сплошная среда). ЛТР подразумевает также, что процессы изучаются при временах, больше чем (время между столкновениями частиц), и на размерах, больших, чем . Тогда в областях вещества, размеры которых превосходят величину (но много меньше величины ), устанавливается равновесие и для них можно ввести средние величины плотности, скорости теплового движения частиц и т.д.

Эти локальные величины (разные в разных точках среды) при сформулированных предположениях находятся из равновесного максвелловского распределения частиц. К ним относится температура , определяющая среднюю кинетическую энергию частиц:

,

где – масса частицы, - средняя скорость хаотичного движения, - постоянная Больцмана (в случае так называемого больцмановского газа).

Связанная с хаотичным движением частиц энергии вещества (внутренняя энергия) определяется через температуру с помощью величины удельной теплоемкости , а именно

, ,

где – плотность вещества ( - число частиц в единице объема), - внутренняя энергия единицы массы. Другими словами, теплоемкость – это энергия, которую необходимо сообщить единице массы вещества, чтобы увеличить температуру на один градус.

Наиболее простое выражение для теплоемкости получается в случае идеального газа (газа, частицы которого взаимодействуют лишь при непосредственном взаимодействии столкновения и, подобно биллиардным шарам, без потери суммарной кинетической энергии). Если в некотором объеме идеального газа содержится частиц, то их полная внутренняя энергия есть

,

где - суммарная масса частиц, а удельная внутренняя энергия, или энергия на единицу массы, дается формулой

,

Т.е. теплоемкость идеального газа равна и не зависит от величин . В общем случае связь между внутренней энергией и температурой более сложная. Например, помимо кинетической энергии движущихся частиц, внутренняя энергия содержит составляющую, связанную с потенциальной энергией их взаимодействия, зависящей от среднего расстояния между ними. В свою очередь , где - число частиц в единице объема, т.е. зависит от плотности . Поэтому в теории теплопередачи величины (или, что то же самое, ) являются, вообще говоря, функциями от и . Их конкретный вид определяется свойствами рассматриваемой среды.

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...