Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ

Для качественного и количественного анализа в КЭ обязательно проводят градуировку системы путем анализа нескольких смесей известного состава. Результатом градуировки являются формирование таблицы компонентов, их времен миграции и построение градуировочной зависимостисигнала детектора от концентрации вещества.

В КЭ используют те же принципы интегрирования пиков, методы градуировки, способы формирования отчетов, как в газовой хроматографии и ВЭЖХ. По аналогии с ВЭЖХ большинство детекторов в КЭ являются концентрационными, где высота или площадь пика прямо пропорциональны концентрации вещества, образующего пик.

Качественный анализ обычно состоит в сравнении времен миграции (для КЗЭ) или времен удерживания (для МЭКХ, из-за различий в принципе разделения), полученных для стандарта и пробы, измеренных в одинаковых условиях. При совпадении этих времен с заданной точностью (окно идентификации редко >5 %), то считают, что искомое вещество в пробе найдено. Такой способ идентификации не надежен в случае анализа проб со сложной матрицей.

При качественном анализе близких пиков рекомендуется использование метода добавок. Если на электрофореграмме появляется новый пик, это означает, что анализируемый компонент ранее в пробе отсутствовал. Если же один из бывших пиков увеличился по высоте (площади), то можно утверждать, что это и есть анализируемый компонент. Величину добавки обычно выбирают так, чтобы высота (площадь) интересующего нас пика увеличилась не более чем в 2–3 раза.

Ситуация, когда время миграции компонента нестабильно от анализа к анализу, нередко связана с нестабильностью ЭОП. Использование в этих случаях маркера ЭОП (например, ацетона) как в растворе стандарта, так и в пробе, позволяет вычислить исправленные времена миграции, представляющие собой разность времен миграции анализируемого вещества и метки ЭОП.

Для повышения достоверности идентификации компонента используют введение в стандартный раствор и пробу внутреннего стандарта (маркера). Это вещество, заведомо отсутствующее в пробах, но имеющее схожие с определяемым компонентом аналитические свойства. Для стандарта и пробы вычисляют относительные времена миграции и находят в пробе близкие по значению результаты.

Наиболее достоверную идентификацию вещества можно получить при использовании диодно-матричного детектора, который по результату одного анализа может предоставить информацию:

- по сопоставлению времени миграции вещества и его спектра в пробе и стандартном растворе (при этом дополнительно будет дана оценка чистоты пика пробы по наложению спектров, снятых в трех точках пика: на обоих склонах и в максимуме);

- по отношению площади пика на двух разных l, полученных для стандарта и пробы. Для одного и того же вещества на двух разных l при неизменном времени миграцииотношение площадей в стандартном растворе и растворе пробы должно быть постоянным. Длины волн выбирают так, чтобы компонент имел при них разное поглощение и высота или площадь пика при разных l были бы различными.

Известно также, что площадь пика зависит от ЭОП и электрофоретической подвижности иона, которые влияют на его скорость. Чем медленнее движется ион по капилляру, тем шире пик и больше его площадь. Для корректировки нестабильности скорости движения иона рекомендуется сравнивать для двух разных l отношения площади пика к его времени миграции. Считается также, что использование электрофоретической подвижности вместо времени миграции позволяет корректно идентифицировать компоненты сложных смесей.

 

Количественная обработка результатов анализа

Для количественного определения необходимо выбрать метод градуировки (внешнего стандарта (абсолютной градуировки), внутреннего стандарта, метод добавок) и определить, какую величину отклика детектора - высоту пика или площадь пика - будут использовать. Затем анализируют стандартные растворы с известными концентрациями веществ и для каждого компонента строят градуировочную зависимость отклика детектора от концентрации вещества, после чего анализируют пробу неизвестного состава и по градуировочному графику находят концентрацию определяемых веществ.

Основным методом градуировки является метод внешнего стандарта(абсолютной градуировки), для которого необходимо иметь ГСО или химически чистые стандарты всех определяемых компонентов. Для одноточечной градуировки компонента используется один градуировочный раствор, зависимость носит строго линейный характер и, как правило, выходит из начала координат. Для построения многоточечной градуировки анализируют несколько подобранных по концентрациям градуировочных растворов, после чего с помощью метода наименьших квадратов рассчитывают коэффициенты прямой, наилучшим образом описывающей экспериментальные данные.

Современные программные комплексы позволяют собирать и обрабатывать электрофоретические данные, хранить их, а также формировать и выдавать отчеты. Для систем КЭ «Капель» рекомендуется программа «МультиХром®». Приборы «Капель» модификации «М» снабжаются программой «Эльфоран®», которая позволяет также управлять самой системой капиллярного электрофореза.

 

Объекты для анализа методом КЭ.

Подготовка пробы

Первые аналитические приложения КЭ были связаны с разделением заряженных компонентов: наиболее подходящими оказались неорганические катионы и анионы, а также карбоновые кислоты. В биотехнологии КЭ используют для анализа макромолекул: белков, углеводов, нуклеиновых кислот. В фармации оценка чистоты лекарственных препаратов и хиральные разделения до сегодняшнего дня в мире на 90 % выполняются различными вариантами КЭ.

Первым этапом анализа является отбор и подготовка пробы. Отобранная проба должна быть представительной, а процедура отбора пробы - легко воспроизводимой.

Схема анализа пробы, разбавленной буфером с минимальной электропроводностью при известном ионном составе включает этапы:

а) для анализа катионов используют 25мМ фосфатный буфер (рН 2,5);

б) для анализа анионов используют 25мМ боратный буфер (рН 9,3);

в) для анализа нейтральных соединений используют 25мМ боратный буфер (рН 9,3) с 25мМ додецилсульфата натрия.

При наложении пиков проводят оптимизацию разделения.

При отсутствии пиков из-за слишком низкой концентрации компонентов выбирают более чувствительный детектор, концентрируют пробу или используют электрокинетический ввод пробы.

На этапе подготовки пробы к анализу проводят удаление мешающих веществ, выделение и концентрирование определяемых соединений, их превращение в более удобные аналитические формы (при необходимости). Так, КЗЭ с косвенным УФ-детектированием позволяет анализировать неорганические анионы в водных объектах на уровне 0,1 мг/л. Подготовка образца питьевой, природной или сточной воды к анализу заключается в фильтровании пробы через мембранный фильтр (диаметр пор 0,2 мкм) и дегазировании фильтрата путем центрифугирования. Для КЭ характерны высокая скорость анализа и малый расход реактивов. Промежуточные операции пробоподготовки должны быть унифицированными и максимально простыми.

 

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...