Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Закон изменения момента количества движения

 

Движение любой механической системы удовлетворяет еще одному общему закону механики – закону об изменении момента количества движения. Этот закон читается так: производная по времени от главного вектора момента количества движения системы материальных точек равна сумме моментов всех внешних сил, приложенных к этой системе. В случае течения жидкости внутри вращающихся сосудов использование этого закона пзволяет получать весьма полезные результаты.

Применим теорему об изменении момента количества движения системы материальных точек к индивидуальному объему жидкости. Полагая в формуле (4.6) , запишем эту теорему в следующем виде:

 

(4.64)

 

Если течение жидкости установившееся, то , поэтому из уравнения (4.40) исчезает первое слагаемое в левой части, а само уравнение можно трактовать как уравнение баланса моментов количества движения в объеме жидкости, ограниченном контрольной поверхностью :

 

(4.65)

 

Уравнение Л.Эйлера для насоса

 

Применим закон об изменении момента количества движения к установившемуся течению жидкости через рабочее колесо центробежного насоса.

Центробежные насосы явлются частным случаем устройств, создающих напор. Как и всякое такое устройство, центробежный насос заставляет жидкость двигаться в направлении против напора, затрачивая для этого определенное количество энергии. Центробежный насос забирает жидкость в сечении всасывания, где давление в жидкости низкое, и заставляет ее перемещаться к сечению нагнетания, где давление в жидкости высокое. Конечно, сама по себе жидкость не будет перемещаться против давления, для этого требуется принуждающая сила. В случае центробежного насоса такой принуждающей силой являяется центробежная сила инерции, действующая на жидкость внутри быстро вращающегося рабочего колеса (ротора) насоса (рис. 4.17).

 

 

 

1

 

 

 

Рис. 4.17. Принцип действия центробежного насоса

Жидкость с низким давлением поступает в полость 1 рабочего колеса вблизи его центра, движется под действием центробежной силы инерции вдоль профилированных лопаток колеса от центра к периферии 2 в направлении против давления и выходит из колеса в трубопровод с повышенным давлением .

Если предположить, что угловая скорость вращения рабочего колеса насоса есть постоянная величина, а течениежидкости – струйное, в котором линии тока повторяют очертание лопаток колеса, то скорости течения и давления являются функциями только радиальной координаты и не зависят от времени, следовательно, течение жидкости внутри рабочего колеса можно считать установившимся. Будем считать также, что турбулизация течения и гидравлические потери отсутствуют.

Выберем контрольную поверхность состоящей из двух частей, двух соосных цилиндров и (рис. 4.18), через первую поверхность жидкость входит в колесо центробежного насоса, через вторую - выходит из колеса. Жидкость, движущаяся в рабочем колесе насоса, участвует в двух движениях: вместе с колесом (переносное движение) и относительно колеса (относительное движение). Абсолютная скорость частиц жидкости равна сумме двух скоростей – скорости переносного движения , т.е. скорости той точки колеса, с которой частица совпадает в данный момент, и скорости относительного движения жидкости вдоль лопаток колеса, так что .

Обозначим: острые углы между вектором абсолютной скорости и касательными к окружностям и , соответственно; острые углы между вектором относительной скорости и касательными к окружностям и , соответственно, рис. 4.18. Углы это углы наклона лопаток колеса к окружностям и , соответственно, т.е. они определяются конструкцией рабочего колеса насоса.

 

 

 

 

 

Рис. 4.18. План скоростей в рабочем колесе насоса

 

Применим уравнение (4.65) к контрольному объему жидкости в колесе. Вычислим левую часть этого уравнения, в которой стоит разность моментов количества движения вытекающего и втекающего в контрольный объем. Поскольку течение происходит в плоскости чертежа, то все моменты (как скоростей, так и сил) направлены по оси, перепендикулярной плоскости чертежа. Имеем:

 

,

,

следовательно,

 

. (4.66)

 

Здесь учтено, что и объемный расход жидкости (подача насоса).

На массу жидкости, заполняющей межлопастные каналы рабочего колеса, действуют внешние силы: силы тяжести, силы давления на контрольных поверхностях , , силы реакции поверхностей лопаток рабочего колеса, а также силы трения жидкости на обтекаемых поверхностях. Момент сил тяжести всегда равен нулю, т.к. плечо этих сил равно нулю (они проходят через ось вращения колеса). Момент сил давления в расчетных сечениях по этой же причине также равен нулю. Следовательно, момент всех внешних сил относительно оси вращения колеса сводится к моменту динамического воздействия рабочего колеса на протекающую через него жидкость

Уравнение (4.65) приобретает вид:

 

, (4.67)

 

где проекция вектора момента всех внешних сил, действующих на колесо, на ось, перепендикулярную плоскости чертежа.

Если обе части этого уравнения умножить на угловую скорость вращения колеса, то произведение даст мощность , передаваемую жидкости насосом, названную в п. 4.4 мощностью сторонних сил: .

Если потери в насосе отсутствуют, то из уравнения Бернулли следует равенство

 

, (4.68)

 

поэтому уравнение (4.67) можно записать в виде:

 

.

 

Учитавая, что , приходим к уравнению

 

, (4.69)

 

называемому уравнением Л.Эйлера. Это уравнение является одним из основных уравнений в теории насов.

Если известны конструктивные параметры насоса и , и , и , а также его подача и угловая скорость вращения рабочего колеса, то все гидравлические параметры, входящие в уравнение (4.69), рассчитываются по следующим формулам:

 

, , ,

.

Уравнение Л.Эйлера можно записать также в терминах давлений. С учетом (4.68) имеем:

 

,

 

откуда следует выражение для разности давлений на периферии и в центре рабочего колеса насоса:

 

. (4.70)

 

Если, , то , , поэтому максимально возможное значение перепада давлений, которое может иметь данный насос, дается выражением:

 

. (4.71)

 

Заметим, что в действительности напор и давление, развиваемые насосом, меньше теоретических значений, т.к. реальные условия работы насоса отличаются от идеальных, принятых при выводе уравнения (прежде всего, наличием гидравлических потерь). Обычно это обстоятельство учитывается введением в формулы (4.69) и (4.70) поправочных коэффициентов.

Пример. Какое максимальное дифференциальное давление может развить нефтяной насос НМ 5000-210, рассчитанный на перекачку 5000 нефти ( ), если известно, что внешний и внутренний диаметры его рабочего колесаравны 440 и 100 мм, соответственно, а число оборотов в минуту составляет 2950?

 

Решение. Находим угловую скорость вращения рабочего колеса насоса:

 

.

 

По формуле (4.71) вычисляем :

 

(Па),

 

что составляет МПа или 19,21 атм. Если перевести это давление в дифференциальный напор насоса, то он окажется равным 223 м.

Ответ: МПа.

 

 

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...