Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






И так встречайте: Контроллер заряда Li pol Li ion батареи или Protection IC for Cell Battery Pack

Li-ion литий ионный

http://club.dns-shop.ru/Doing/blog/%D0%90%D0%BA%D0%BA%D1%83%D0%BC%D1%83%D0%BB%D1%8F%D1%82%D0%BE%D1%80%D1%80%D1%8B-%D0%BA%D0%B0%D0%BA-%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%B8%D1%82%D1%8C-%D0%B8-%D1%81-%D1%87%D0%B5%D0%BC-%D0%BF%D0%BE%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D1%8C/

Тут начинается самое вкусное:
Ведь это он на пару со своим братом литий полимером, питает ваш мобильник, ваш ноутбук, и многое другое.

Его сильные стороны


*большая плотность заряда
*Возможность заряда большими токами (то есть его можно зарядить достаточно быстро)
*В виде полноценной АКБ не требует обслуживания (но об этом чуть ниже )
*Низкий саморазряд
*Терпит большие токи разряда

Минусы


*не любит минусовых температур.
*не любит полного разряда, дохнет тут же.
*при полном заряде теряет емкость (тут требуется емкое пояснение и оно будет ниже )

Li-pol литий полимерный


Это продвинутая версия Li-ion, в частности Li-pol не имеют жесткого (металлического корпуса) что делает их тонкими и легкими.

Где то тут нужно сказать о том что "расскачка" li pol аккумуляторов бесполезное и бессмысленное дело, так как LI pol не имеет "эффекта памяти".
По сути весь его внутренний мир укутан в жесткий целлофан, это же является как плюсом так и минусом, повредить его не так уж и сложно, а удачно поврежденный литийполимер способен возгореться, а горят они достаточно ярко и сильно.
Тут я сделаю отступление, в интернете можно часто встретить информацию что литийполимеры имеют малый срок жизни (это не совсем так ), ведь процесс не стоит на месте и появляются аккумуляторы все большей и большей плотности и более увеличенной живучестью. По личному опыту могу сказать многое зависит от качества самого Li pol, в среднем качественный Li pol держит смело 3 -4 года а то и все 5 лет до начала ощутимой потери емкости (как правило потеря емкости происходит постепенно ). То есть он не раз и сдох,а раз и телефон стал работать на 5-10 минут меньше.
Также в интернете есть статьи про использование литийполимеров где всячески пугают потребителя мол постоянно заряжаемый Li pol проживет дольше, вот например где есть такая табличка
и мол аккумулятор разряженный полностью проживет 500 циклов заряда, а аккумулятор разряженный на 90% проживет 4700 циклов заряда, бредом я это конечно назвать не могу, так как доля правды в этом есть, но есть вещи которые просто не учтены совсем:
1 100% заряженные Li pol теряют емкость (так называемый эффект старения )
2 Если опираясь на эту табличку добавить еще параметр "время разряда" и "частоту заряда" то в конечных расчетах вы получите приблизительно одно и тоже время жизни Li pol аккумулятора
3 Многие статьи по использованию Li pol написаны для людей кто использует чистые "банки" (и мало где это упоминается)

И так что такое чистая "банка" или кто стоит на страже вашего аккумулятора


В каждом Li pol аккумуляторе (далее АКБ) есть эдакий страж который защищает вашу АКБ от неправильной эксплуатации, продлевая ей жизнь.

Портативное зарядное устройство своими руками

 

http://www.mobipower.ru/modules.php?name=News&file=article&sid=538

 

Описана конструкция самодельного накопителя (PowerBank'а) типа "Вампирчика". Дана схема и описание ее изготовления. Вообще, приятно читать подобные материалы, где автор серьезно подходит к делу.

Пролог

На идею постройки этой конструкции меня натолкнул полёт в самолёте Airbus A380, в котором под подлокотником каждого кресла имеется разъём USB, предназначенный для питания USB-совместимых устройств.

 

Но, такая роскошь есть не во всех самолётах, а уж тем более её не найти в поездах и автобусах. А я уже давно мечтаю пересмотреть от начала до конца сериал «Друзья». Так почему бы не убить сразу двух зайцев – посмотреть сериал и скрасить время в пути. Дополнительным стимулом к постройке данного девайса стало открытие залежей мощных литий-ионными аккумуляторов.

Техническое задание

Портативое Зарядное Устройство (ЗУ) должно обеспечить следующие возможности.

1. Время работы в автономном режиме под номинальной нагрузкой, не менее – 10 часов. Литий-ионные аккумуляторы большой ёмкости, как нельзя лучше подходят для этого.

2. Автоматическое включение и отключение ЗУ в зависимости от наличия нагрузки.

3. Автоматическое отключение ЗУ при критическом разряде аккумулятора.

4. Возможность принудительного включения ЗУ при критическом разряде аккумулятора, в случае необходимости. Я полагаю, что в дороге может сложиться такая ситуация, когда аккумулятор портативного ЗУ уже разряжен до критического уровня, но необходимо подзарядить телефон для экстренного звонка. В этом случае, нужно предусмотреть кнопку «Экстренного включения», чтобы использовать всё ещё имеющуюся в аккумуляторе энергию.

5. Возможность заряда аккумуляторов портативного ЗУ от сетевого зарядного устройства с интерфейсом Mini USB. Так как зарядное устройство от телефона всё равно всегда берут с собой в дорогу, то можно его использовать и для заряда аккумуляторов портативного БП перед обратной дорогой.

6. Одновременный заряд аккумуляторов ЗУ и подзарядка мобильного телефона от одного и того же сетевого зарядного устройства. Так как сетевое зарядное устройство от мобильного телефона не может обеспечить достаточный ток для быстрого заряда аккумулятора портативного ЗУ, то заряд может растянуться на сутки и более. Поэтому, должна быть возможность подключить телефон на заряд прямо во время заряда батареи портативного БП.

Исходя из этого технического задания, было построено портативное ЗУ на литий-ионных аккумуляторах.

Блок схема

Портативное ЗУ состоит из следующих узлов.

1. Преобразователь 5 > 14 Вольт.
2. Компаратор, отключающий преобразователь заряда при достижении напряжения на батарее литий-ионных аккумуляторов 12,8 Вольт.
3. Индикатор заряда – светодиод.
4. Преобразователь 12,6 > 5 Вольт.
5. Компаратор 7,5 Вольт, отключающий ЗУ при глубоком разряде батареи.
6. Таймер, определяющий время работы преобразователя при критическом разряде батареи.
7. Индикатор работы преобразователя 12,6 > 5 Вольт – светодиод.

Назначение узлов схемы.

IC1 – повышающий преобразователь напряжения 5 > 14 Вольт, который служит для заряда встроенной аккумуляторной батареи. Преобразователь ограничивает входной ток на уровне 0,7 Ампера.

DD1.1, DD1.2 – компаратор заряда батареи. Прерывает заряд по достижению 12,8 Вольт на батарее.

DD1.3, DD1.4 – генератор индикации. Заставляет мигать светодиод во время заряда. Индикация сделана по аналогии с зарядными устройствами Nikon. Пока идёт заряд, светодиод мигает. Заряд окончен – светодиод горит постоянно.

IC2 – понижающий преобразователь 12,6 > 5 Вольт. Ограничивает выходной ток на уровне 0,7 Ампера.

DD2.1, DD2.2 – компаратор разряда батареи. Прерывает разряд батареи при снижении напряжения до 7,5 Вольт.

DD2.3, DD2.4 – таймер экстренного включения преобразователя. Включает преобразователь на 12 минут, даже если напряжение на батарее упало до 7,5 Вольт.

Тут может возникнуть вопрос, почему выбрано такое низкое пороговое напряжение, если некоторые производители не рекомендуют допускать его снижение ниже 3,0 и даже 3,2 Вольта на банке?

Я рассуждал так. Путешествия случаются не так часто, как этого бы хотелось, поэтому батарее вряд ли придётся пережить много циклов заряда-разряда. Между тем, в некоторых источниках, описывающих работу литий-ионных батарей, напряжение 2,5 Вольта как раз называют критическим.

Но, Вы можете ограничить предельный разряд более высоким уровнем напряжения, если предполагается часто использовать подобное зарядное устройство.

Конструкция и детали

 

Печатные платы (ПП) изготовлены из фольгированного стеклотекстолита толщиной 1мм. Размеры ПП выбраны исходя из размеров приобретённого корпуса.

 

Все элементы схемы, кроме аккумуляторной батареи, размещены на двух печатных платах. Причём на меньшей расположен только разъём Mini USB для подключения внешнего зарядного устройства.

Узлы БП были помещены в стандартный полистироловый корпус Z-34. Это самая дорогая деталь конструкции, за которую пришлось выложить 2,5$.


Выключатель питания поз.2 и кнопка принудительного включения поз.3 спрятаны заподлицо с внешней поверхностью корпуса, во избежание случайного нажатия.

Разъём Mini USB выведен на заднюю стенку корпуса, а разъём USB поз. 4 вместе с индикаторами поз. 5 и поз.6 на переднюю.

Размер печатных плат рассчитан так, чтобы зафиксировать аккумуляторы в корпусе портативного БП. Между аккумуляторами и другими элементами конструкции вставлена прокладка из электрокартона толщиной 0,5мм, согнутая в виде коробки.


А это портативный БП в собранном виде.

Настройка

Настройка портативного зарядного устройства свелась к подбору экземпляров стабилитронов и сопротивлений балластных резисторов для каждого из двух компараторов.

Как подогнать резисторы с высокой точностью описано здесь.

Дополнительные материалы
Скачать даташит на микросхему MC34063 и её аналог КР1156ЕУ5 на русском языке (50КБ).

Скачать портативную программу для расчёта параметров преобразователя MC34063 (60КБ).

Скачать чертёж печатной платы в формате Sprint Layout (50КБ).

Скачать портативную программу Sprint Layout 5.0 для рисования, редактирования и вывода на печать печатных плат. Интерфейс русский. (4,4МБ).

 

 

Источник:
http://oldoctober.com/ru/charger/?cp=all

 

 

Зарядка литиевых батарей

 

http://radiokot.ru/forum/viewtopic.php?f=11&t=114759


http://cds.linear.com/docs/en/datasheet/405442xf.pdf

http://www.ti.com/lit/ds/symlink/lm3622.pdf
http://dlnmh9ip6v2uc.cloudfront.net/dat ... TP4056.pdf

 

Форум по литиевым АКБ.

http://radioskot.ru/forum/2-846-2

 

Схема устройства очень проста. При подключении у порту USB компьютера после нажатия кнопки "Старт" начинается процесс зарядки. Три резистора на 1,6 Ом служат в роли ограничителя тока и в качестве датчика тока. Протекающий через них ток создает падение напряжения, которое прикладываясь к базе Т2 держит его в открытом состоянии. В результате светится светодиод и открывается полевой транзистор Т1. Транзистор я выпаял из платы защиты от старого литиевого аккумулятора, но его вполне можно заменить таким распространенным транзистором, как IRLML2502. Ток в аккумулятор будет течь до тех пор, пока напряжение на нем не достигнет 4,25в. При этом напряжении срабатывает компаратор защитной платы, расположенной внутри каждого аккумулятора для мобильных телефонов и фотоаппаратов. Ток в цепи заряда падает до нуля, Т2 закрывается и обесточивает светодиод и затвор Т1.
Устройство переходит в неактивное состояние и не потребляет ток ни от USB ни от аккумулятора.


________________________________________________________________________
http://radioskot.ru/forum/2-846-7

 

haos_84, схему эту выкладывал я, но схема не моя, у меня данное зарядное успешно используется уже около 2-х лет именно для заряда блока из 3-х литиевых банок 18650. Теперь по самой схеме, на lm317 собран стабилизатор тока, который будет ограничивать максимальный ток заряда, на lm2576 собран импульсный регулируемый источник напряжения 12,6в, ну а на операционниках собран так называемый балансир, светодиоды как раз индицируют процесс балансировки.

 

 

МОДУЛЬ ЗАРЯДА LI-ION АККУМУЛЯТОРОВ НА МИКРОСХЕМЕ TP4056 ИЗ ПОДНЕБЕСНОЙ
    Вот такую весьма полезную штуку я сегодня получил на почте. Это, небольших размеров, плата содержит контроллер заряда Li-Ion аккумуляторов TP4056 (Datasheet) Микросхема имеет индикацию процесса заряда и сама отключает аккумулятор при достижении напряжения на нем 4,2 В.         Судя по схеме из даташита, микросхема имеет вход для подключения терморезистора АКБ. Но на плате первая ножка микросхемы сидит на земле и для подключения аккумулятора доступны только выводы питания.     Ток заряда зависит от номинала резситора Rprog на 2 ножке микросхемы. На плате которая пришла ко мне стоит резистор 1,2 кОм. Что, судя по таблице из даташита, соответствует току заряда 1000мА     При таком токе, мой подсевший аккумулятор (от Nokia что на фото) зарядился примерно за час с начального напряжения 3,4 до 4,19 Вольт. На вход зарядника подавал 5 вольт от USB компьютера. Пощупал, ничего не нагрелось. Боялся что при максимальном токе будет нагреваться аккумулятор, тем более что обратная связь отсутствует. Но ничего, обошлось. При первом запуске ничего не взорвалось и не грелось за все вермя работы :) В общем по впечатлениям контроллер понравился, и в первую очередь ценой. За 1,5$ получаем полноценный контроллер с индикацией и в готовом исполнении, удобном для применения в своих проектах. Вот, кому интересно, ссылка на лот http://www.ebay.com/1497.l2649

 

http://www.rlocman.ru/forum/showthread.php?t=11538

http://shemu.ru/zarydnoe/169-easy-ch...-from-usb.html

 

http://www.hobbielektronika.hu/kapcs...sor_tolto.html

 

Параллельное соединение Li-Ion аккумуляторов различной емкости

http://forum.fonarevka.ru/showthread.php?t=15615

Ну что же. оказывается, некоторое количество людей до сих пор больше верит в магию чем в физику.

и такой простой случай, как параллельное включение химических источников тока вызывает разброд и шатание в умах.

итак, к счастью наиболее часто используемый и разумный способ параллельного соединения аккумуляторов, а именно одинаковых, одного производителя и одной номинальной емкости, не вызывает почти ни у кого сомнений - общая емкость равна емкости одного аккумулятора умноженной на их количество. хорошо.

но периодически возникают вопросы типа "а вот если соединить хороший заряженный аккумулятор с плохим разряженным который нашли в помойке", то общая емкость будет равна емкости самого большого аккумулятора, самого маленького, средней арифметической емкости, и вообще неизвестно чему, ибо хороший аккумулятор будет тратить часть своей энергии на заряд плохого, и вообще там будут происходить непонятные процессы, один будет разряжаться раньше другого и прочая и прочая...

кроме того, если запараллелить хороший заряженный с плохим разряженным то они каааааак падзарвуца! поэтому параллелить надо только аккумуляторы с защитой

нет. нет. Нет и НЕТ!

емкости всегда складываются при параллельном соединениии. ни средняя, ни минимальная или максимальная, а просто сумма.

хороший аккумулятор не будет подзаряжать плохой, потому что для появления зарядного тока нужна разность потенциалов между аккумуляторами, а она при параллельном соединении равна нулю.

всегда. и поэтому при разряде происходит автоматическое перераспределение токоотдачи с каждого аккумулятора таким образом, что в итоге они разряжаются одновременно, независимо от их разрядных характеристик и начальной емкости.

переходим к практическим занятиям.

берем 2 аккумулятора - Panasonoc CGR18650E и, насколько я помню, Ultrafire 18650 (обложка с маркировкой не сохранилась) категории DOA.

предварительно заряжаем и разряжаем каждый током 0.5А до напряжения 2.8В

емкости получились соответственно 2403 и 171 мАч.

внутренние сопротивления 85 и 400мОм.

соединяем в параллельную сборку, заряжаем и разряжаем током 1А (т.е формально теми же самыми 0.5А на каждый, в случае если бы это были одинаковые аккумуляторы) до того же самого напряжения 2.8В.

отданная такой сборкой емкость получилась 2661 мАч, что на 87мАч больше суммарной емкости отдельных аккумуляторов. удивительно? нисколько. потому что разряд происходит не общим током поделенным на количество аккумуляторов, а различным, зависящим от внутреннего сопротивления и емкости каждого аккумулятора. понятно, что плохой аккумулятор разряжается гораздо меньшим током чем хороший, а потому отдает несколько больше мАч. но в общем хорошо видно, что емкость хорошего не тратится на подзаряд плохого.

далее. животрепещущий вопрос, что же будет, если мы в дорогущий фонарик за 200 с лишним баксов понапихаем различных аккумуляторов, среди которых обязательно должен затесаться как минимум один, полностью разряженный и вообще чудом избежавший этапирования в мусорное ведро.

да ничего не будет:

 

и этот ток стремительно падает, через 5-8 секунд уже немногим больше 600мА

напомню, что сила тока зависит от сопротивления цепи и разности потенциалов, которая в свою очередь определяется разностью эдс аккумуляторов и падением напряжений на их внутренних сопротивлениях. т.е чем больше ток, тем больше напряжение на разряженном и меньше на заряженном, что снижает разность потенциалов и вызывает уменьшение тока в цепи. и этот процесс развивается в далее в сторону снижения тока вплоть до 0.

 

второй вариант - параллельное соединение заряженных и разряженных, но качественных, живых аккумуляторов (менее интересный, почему-то большинство заботит именно первый вариант, с плохим аккумулятором, а хорошие все собираются использовать исключительно равнозаряженными)

 

ток прилично выше. но он так же постепенно падает.

в любом случае, индивидуальная защита аккумуляторов ни в том ни в другом случае просто не сработала бы, ток недостаточен. а с платами защиты будет еще меньше, т.к. это добавочное сопротивление.

даже если включить 3 заряженных и 1 разряженный, скорее всего ток не будет сильно выше, потому как больший ток вызовет увеличение напряжения на разряженном аккумуляторе, что приведет к снижению разности потенциалов и т.д.

 

ну и напоследок коснусь попадающихся иногда вопросов, что будет происходить при заряде и разряде параллельной сборки аккумуляторов с индивидуальными защитами. якобы при заряде один из аккумуляторов перезарядится до срабатывания защиты, отключится, и на остальные пойдет больший ток.

нет, не может какой-то один аккумулятор перезарядиться. в сборке напряжение одинаковое по всем аккумуляторам, все они зарядятся одновременно.

равно как и при разряде - не может один отключиться по переразряду вызвав тем самым повышенную нагрузку на остальные. не может. потому что опять таки одинаковое напряжение на каждом. параллельное соединение ибо.

 

От 450 руб.

Плата индикации уровня заряда (напряжения) для Li-Ion/Li-Pol аккумуляторных батарей.

Возможны варианты исполнения для конфигураций от 2S (7,4В) до 13S (48В)

Индикатор подключается либо к специальному разъему на плате контроллера либо, непосредственно к выводам P+ и P- (выводам контроллера)

Кратковременное нажатие на кнопку ON/OFF включает светодиодную индикацию на несколько секунд.

5ти сегментный светодиодный индикатор отображает уровень заряда от 20% до 100%.

0% (< 3В на Li-ion ячейке) Светодиод моргает
20% (3,0 - 3,3В на Li-ion ячейке) горит 1 светодиод
40% (3,3 - 3,5В на Li-Ion ячейке) горит 2 светодиода
60% (3,5 - 3,8В на Li-Ion ячейке) горит 3 светодиода
80% (3,8 - 4,0В на Li-Ion ячейке) горит 4 светодиода
100% (4,0 - 4,2В на Li-Ion ячейке) горит 5 светодиодов

Ток потребления индикатора: <0,5мА
Габаритные размеры: 50х26х3мм

Предостережения:
1. Подключайте индикатор Li-Ion аккумулятора только в соответствии с правильной полярностью: красный провод - плюс батареи, черный провод - минус батареи
2. Используйте индикатор только для батареи соответствующего напряжения. Подключение индикатора к батарее с напряжением отличным от рекомендуемого может вывести индикатор из строя.

 

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин
VD1 ИС источника опорного напряжения TL431A-Q1 Корпус SOT23, по количеству балансиров Поиск в магазине
T1 Биполярный транзистор MMBT3906 Корпус SOT23, по количеству балансиров Поиск в магазине
T2 MOSFET-транзистор FDD8447L По количеству балансиров Поиск в магазине
R1 Резистор 180 Ом Типоразмер 0805 Поиск в магазине
R2 Резистор 150 Ом   Поиск в магазине
R3 Резистор 4.7 кОм   Поиск в магазине
R4 Резистор 11 кОм   Поиск в магазине
R5 Резистор 220 кОм   Поиск в магазине
R6 Резистор 10 кОм   Поиск в магазине
R7 Резистор 10 Ом 2 Вт, по количеству балансиров Поиск в магазине

Скачать список элементов (PDF)

Прикрепленные файлы:

  • Пл_нов_балл_170714.lay (57 Кб)

Вариант схемы балансировки.
http://mysku.ru/blog/aliexpress/32986.html

aliexpress.com/item/-/32254531495.html
aliexpress.com/item/-/32353583944.html

maxwell тоже используют такую же схему балансировки
www.maxwell.com/images/documents/UserManual_integrati

Li-ion литий ионный

http://club.dns-shop.ru/Doing/blog/%D0%90%D0%BA%D0%BA%D1%83%D0%BC%D1%83%D0%BB%D1%8F%D1%82%D0%BE%D1%80%D1%80%D1%8B-%D0%BA%D0%B0%D0%BA-%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%B8%D1%82%D1%8C-%D0%B8-%D1%81-%D1%87%D0%B5%D0%BC-%D0%BF%D0%BE%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D1%8C/

Тут начинается самое вкусное:
Ведь это он на пару со своим братом литий полимером, питает ваш мобильник, ваш ноутбук, и многое другое.

Его сильные стороны


*большая плотность заряда
*Возможность заряда большими токами (то есть его можно зарядить достаточно быстро)
*В виде полноценной АКБ не требует обслуживания (но об этом чуть ниже )
*Низкий саморазряд
*Терпит большие токи разряда

Минусы


*не любит минусовых температур.
*не любит полного разряда, дохнет тут же.
*при полном заряде теряет емкость (тут требуется емкое пояснение и оно будет ниже )

Li-pol литий полимерный


Это продвинутая версия Li-ion, в частности Li-pol не имеют жесткого (металлического корпуса) что делает их тонкими и легкими.

Где то тут нужно сказать о том что "расскачка" li pol аккумуляторов бесполезное и бессмысленное дело, так как LI pol не имеет "эффекта памяти".
По сути весь его внутренний мир укутан в жесткий целлофан, это же является как плюсом так и минусом, повредить его не так уж и сложно, а удачно поврежденный литийполимер способен возгореться, а горят они достаточно ярко и сильно.
Тут я сделаю отступление, в интернете можно часто встретить информацию что литийполимеры имеют малый срок жизни (это не совсем так ), ведь процесс не стоит на месте и появляются аккумуляторы все большей и большей плотности и более увеличенной живучестью. По личному опыту могу сказать многое зависит от качества самого Li pol, в среднем качественный Li pol держит смело 3 -4 года а то и все 5 лет до начала ощутимой потери емкости (как правило потеря емкости происходит постепенно ). То есть он не раз и сдох,а раз и телефон стал работать на 5-10 минут меньше.
Также в интернете есть статьи про использование литийполимеров где всячески пугают потребителя мол постоянно заряжаемый Li pol проживет дольше, вот например где есть такая табличка
и мол аккумулятор разряженный полностью проживет 500 циклов заряда, а аккумулятор разряженный на 90% проживет 4700 циклов заряда, бредом я это конечно назвать не могу, так как доля правды в этом есть, но есть вещи которые просто не учтены совсем:
1 100% заряженные Li pol теряют емкость (так называемый эффект старения )
2 Если опираясь на эту табличку добавить еще параметр "время разряда" и "частоту заряда" то в конечных расчетах вы получите приблизительно одно и тоже время жизни Li pol аккумулятора
3 Многие статьи по использованию Li pol написаны для людей кто использует чистые "банки" (и мало где это упоминается)

И так что такое чистая "банка" или кто стоит на страже вашего аккумулятора


В каждом Li pol аккумуляторе (далее АКБ) есть эдакий страж который защищает вашу АКБ от неправильной эксплуатации, продлевая ей жизнь.

И так встречайте: Контроллер заряда Li pol Li ion батареи или Protection IC for Cell Battery Pack



В частности это уже готовая плата, вариантов которой может быть множество.
Например микросхем может быть больше, у сотовых телефонов батареи имеют 3 контакта и более, дополнительные микросхемы по третьему контакту могут передавать информацию о температуре батареи или ее идентификационный номер который говорит телефону что батарея именно от него.

Тут отмечу что данную микросхему обмануть не вскрывая и не воздействуя на нее на прямую невозможно, так что переживать о том что ваш аккумулятор сдохнет от перезаряда или глубокого разряда не стоит, но и не стоит забывать о дефектах всякое бывает.
Так же встречал заблуждение что контроллер питания в смартфоне контролирует заряд разряд акб и мол если он врет уровень заряда который отображает на экране телефона (смартфона и т.д)то АКБ при заряде может быть перезаряжена - это не так, то есть даже если в телефоне батарея встроена (несъемная ) она все равно имеет свой контроллер а контроллер питания смартфона (телефона) следит за энергопотреблением аппарата, и собирает статистику из которой указывает заряд батареи, бывает и так что они совмещены но это не значит что если он показывает неверный уровень заряда то батарея будет перезаряжена или глубоко разряжена.

Постараюсь доступно рассказать как это работает:



1 Сама "банка"
2 клеммы (контакты)"банки"
3 сам контроллер
4 клеммы к котором подключается потребитель (телефон )

Чистый Li pol имеет свой рабочий диапазон напряжений приблизительно от 3 вольт до 4.2 вольта
то есть если разряд опуститься ниже 3 вольт (точка заряда 0% ) то на Li pol это негативно скажется (глубокий разряд) , ровно так же если напряжение будет выше 4.2 вольт(точка 100 % заряда) то это уже будет перезаряд.
И так, контроллер следит за этими напряжениями и когда на "банке" (1) оно равно ~ 3.2 вольта он отключает клеммы (2) тоже самое происходит если на "банке" ~ 3.8-4 вольта (эти напряжения задаются на заводе и могут колебаться как и рабочий диапазон Li pol ) хитрость тут вот в чем контроллер не допускает слишком низкого разряда оставляя 3.2 вместо 3 вольт и полного заряда 4 вольта вместо 4.2 то есть рабочий диапазон получается 10% -90%, что позволяет продлить жизнь АКБ.
Так же контроллер следит и за тем что твориться на "выходе" (4) если на выходе слишком большая нагрузка или короткое замыкание клеммы "банки" (2) отключаются.
Еще контроллер заряда может "забраковать" банку, например если разряженный аккумулятор долго хранился и из за саморазряда напряжение опустилось например до ~ 2.5в то есть все шансы что вновь АКБ не заработает, контроллер просто не будет подавать напряжение на "банку" при заряде.
Если кому интересно всегда есть шанс запустить такой аккумулятор, не без последствий конечно, но есть все шансы что он вполне еще поживет.
Для начала нужно разобрать,изъять АКБ, замерить прибором (вольтметром,мультиметром) ток на клеммах (2)(дабы быть уверенным что банка жива и имеет хоть какой то заряд, если он ниже 1-2 вольта, смело в мусорку) после чего разобраться где плюс где минус, разобравшись с полярностью падать ток от блока питания,зарядника на клеммы "банки" (2) и зарядить до 3 вольт, главное чтобы сила тока блока питания,зарядника не превышала ёмкость банки и напряжение было в диапазоне 4-5вольт . После чего можно пробовать вставить АКБ на свое законное место и попытаться зарядить штатным зарядным устройством, если АКБ начнет заряжаться, то возможно вам повезло и какая то полезная емкость все же осталась.

Последнее изменение этой страницы: 2016-08-28

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...