Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Подбор форм микроорганизмов с заданными свойствами

Подбор необходимых для культивирования форм микроорганизмов с за­данными свойствами включает несколько этапов.

2.1. Выделение микроорганизмов.Отбираются пробы из мест обитания микроорганизмов (почва, растительные остатки и т.д.). Применительно к углеводородокисляющим микроорганизмам таким местом может быть почва возле бензоколонок, винные дрожжи обильно встречаются на винограде, анаэробные целлюлозаразлагающие и метанобразующие микроорганизмы в больших количест­вах обитают в рубце жвачных животных.

^ 2.2. Получение накопительных культур.Образцы вносят в жидкие питательные среды специального состава, создают благоприятные условия для развития продуцента (температура, РН, источники энергии, углерода,
азота и т.д.). Для накопления продуцента холестериноксидазы используют среды с холестерином в качестве единственного источника углерода; углеводородокисляющих микроор­ганизмов - среды с парафинами; продуцентов протеолитических или липолитических ферментов - среды, содержащие белки или липиды.
^ 2.3. Выделение чистых культур.На плотные питательные среды засевают образцы проб из накопительных культур. Отдельные клетки микроорганизмов на плотных питательных средах образуют изолированные
колонии или клоны, при их пересеве получаются чистые культуры, состоящие из клеток одного вида про­дуцента.

^ Другой путь подбора микроорганизмов - из имеющихся коллекций.Например, продуцентами антибиотиков чаще являются актиномицеты, этанола -дрожжи.

^ Клон- культура, полученная из одной клетки, чистая культура- сово­купность особей одного вида микроорганизмов, штаммы- культуры, выделен­ные из различных природных сред или из одной среды в разное время.

2.4. Определение способности синтезировать целевой продукт -главный критерий при отборе продуцентов. Микроорганизмы должны соответство­вать следующим требованиям:

 


обладать высокой скоростью роста;


использовать для жизнедеятельности дешевые субстраты;


быть устойчивыми к заражению посторонней микрофлорой.


Одноклеточные организмы характеризуются более высокими скоростями синтетических процессов, чем высшие растения и животные. Так, корова массой 500 кг в течение одних суток синтезирует около 0,5 кг белка. Такое Же количест­во белка за одни сутки можно получить с помощью 5 г дрожжей. Интерес пред­ставляют фотосинтезирующие микроорганизмы, использующие энергию света, способные к усвоению атмосферного азота. Выгодны термофильные микроорга­низмы. Их использование снижает дополнительные затраты на стерилизацию промышленного оборудования. Скорость роста и обмен веществ у этих организмов в 1,5-2 раза выше, чем у мезофилов. Синтезирующие ими ферменты устой­чивы к нагреванию, действию кислот, органических растворителей.


Методы биотехнологии

 

В биотехнологии выделяют 2 метода: 1) Селекция; 2) Генная инженерия. Для получения высокоактивных продуктов используют методы селекции. С помощью селекции получены промышленные штаммы микроорганизмов, син­тетическая активность которых превышает активность исходных штаммов в де­сятки и сотни раз.

Селекция

Селекция -направленный отбор мутантов (организмов, наследственность которых претерпела скачкообразное изменение). Генеральный путь селекции -переход от простого отбора продуцентов к сознательному конструированию их геномов. На каждом из этапов из популяции микроорганизмов отбираются наи­более высокоэффективные клоны. Таким путем за длительное время были ото­браны штаммы пивных, винных, пекарских, уксуснокислых дрожжей, пропионовокислых бактерий и др. Применяется ступенчатый отбор: на каждом из этапов из популяции микроорганизмов отбираются наиболее высокоэффективные кло­ны. Ограниченность метода селекции, основанного на спонтанных мутациях, свя­зана с их низкой частотой, что значительно затрудняет интенсификацию процес­са. Изменения в структуре ДНК происходят редко. Ген должен удвоиться в сред­нем 106-108 раз, чтобы возникла мутация. Примером отбора наиболее продуктив­ных мутантов при культивировании в непрерывном режиме является отбор дрожжей по признаку устойчивости к этанолу, продукту жизнедеятельности дрожжей. К значительному ускорению селекции ведет индуцированный мутагенез - резкое увеличение частоты мутаций биообъекта при искусственном повреждении генома. Мутагенным действием обладают ультрафиолетовое, рентгеновское или у-излучение, некоторые химические соединения, вызывающие изменения пер­вичной структуры ДНК. К числу наиболее известных и используемых мутагенов относятся азотистая кислота, алкилирующие агенты и т.д.


Проводят тотальную проверку (скрининг)полученных клонов. Отобрав наиболее продуктивные клоны, повторяют обработку тем же или другим мутагеном, вновь отбирают наиболее продуктивный вариант и т.д., т.е. речь идет о сту­пенчатом отборе по интересующему признаку.

Трудоемкость - основной недостаток метода индуцированного мутагенеза и последующего ступенчатого отбора. Недостатком метода является также от­сутствие сведений о характере мутаций, исследователь проводит отбор по конеч­ному результату.


^ 3.2. Генетическая инженерия


Генетическая инженерия – направленная модификация биообъектов в ре­зультате введения искусственно созданных генетических программ. Уровни генетической инженерии:

 


генная– прямое манипулирование рекомбинантными ДНК, включающими отдельные гены;


хромосомная– манипулирование с группами генов или отдельными хромосомами;


геномная(клеточная) – перенос всего или большей части генетиче­кого материала от одной клетки к другой (клеточная инженерия). В современном понимании генетическая инженерия включает технологию рекомбинантных ДНК.


^ Работа в области генетической инженерии включает 4 этапа:1) полу­чение нужного гена; 2) встраивание его в вектор, способный к репликации; 3) введение гена с помощью вектора в организм; 4) питание и селекция клеток, ко­торые приобрели желаемый ген.

Генетическая инженерия высших растений осуществляется на клеточном, тканевом и организменном уровне.

Основой клеточной инженерии является гибридизация соматических кле­ток – слияние неполовых клеток с образованием единого целого. Слияние клеток может быть полным или с введением их отдельных частей (митохондрий, хлоропластов и т.д.).

Соматическая гибридизация позволяет скрещивать генетически отдален­ные организмы. Растительные, грибные и бактериальные клетки перед слиянием освобождают от клеточной стенки и получают протопласты. Затем проводят де­поляризацию наружных цитоплазматических мембран переменным электриче­ским или магнитным полем, используют катионы Са . Клеточную стенку под­вергают ферментативному гидролизу.

 

Последнее изменение этой страницы: 2016-08-28

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...