Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Факторы, влияющие на биосинтез ферментов


Существует мнение, что из клеток микроорганизмов можно выделить лю­бые из известных ферментов. Большинство микроорганизмов способно расти на относительно простых и дешевых питательных средах. Преодоление трудностей, связанных с их производством и использованием, связано с получением иммо­билизованных ферментов.

Иммобилизация ферментов - это перевод их в нерастворимое состояние с сохранением (частичным или полным) каталитической активности.

Для получения иммобилизованных ферментов обычно применяют следующие методы:

 


Ковалентные присоединение молекул ферментов к водонерастворимому носителю, в качестве которого используют как органические (природные и син­тетические) полимеры, так и неорганические материалы. К первым относятся целлюлоза, хитин, агароза, декстрины, бумага, ткани, полистирол, ионообмен­ные смолы и так далее. Ко вторым - пористое стекло, силикагели, силохромы, керами­ка, металлы и другие.


Захват фермента в сетку геля или полимера.


Ковалентная сшивка молекул фермента друг с другом или с инертными белками (при помощи би - или полифункционального реагента).


Адсорбция фермента на водонерастворимых носителях (часто на ионитах).


Микрокапсулирование (захват раствора фермента в полупроницаемые капсулы размером 5-300 мкМ). В результате иммобилизации ферменты приобретают преимущества гете­рогенных катализаторов. Их можно удалять из реакционной смеси и отделять от субстратов и продуктов ферментативной реакции) простой фильтрацией.


Иммобилизованные ферменты более устойчивы к внешним воздействиям, чем растворимые ферменты.

Принцип иммобилизации был применен не только к ферментам, но и к их субстратам - веществам, имеющим избирательное средство к ферментам. Это позволило создать метод выделения и очистки ферментов, основанный на хрома­тографии по сродству. Облегчилось выделение чистых ферментов.

В последнее время применяют иммобилизованные клетки микроор­ганизмов, содержащих естественный набор ферментов. Отпадают стадии вы­деления, очистки и иммобилизации ферментов. Ферменты в микроорганизме находятся в наиболее естественном окружении, что положительно сказывается на их термостабильности и операционной стабильности (продолжительности работы в условиях опыта). Ферменты в составе клеток микроорганизмов долго сохраняют каталитические свойства. Они также являются гетерогенными биокатализаторами со всеми преимуществами их использования в технологических целях.

Иммобилизация клеток обычно проводится их адсорбцией на водонерастворимых носителях (часто на ионообменных смолах), ковалентной сшивкой с помощью бифункциональных реагентов (например, глутарового альдегида) или захвата их в полимер, как правило, с последующим формованием в виде частиц определенного размера и конфигурации.

Иммобилизация целых клеток микроорганизмов предотвращает их раз­множение и обычно увеличивает сохранность и срок работы в качестве катализа­тора по сравнению с необработанными клетками.

Состав и количество синтезируемых клетками ферментов зависит от на­следственных свойств данного организма. Под действием мутагенных факторов (ионизирующее и неионизирующее излучения, изотопы, антибиотики, химиче­ские соединения, обладающие высокой преобразующей способностью по отно­шению к наследственным элементам клетки), получают промышленно ценные штаммы мутантов.

Производительность технологических процессов по каждому ферменту за­висит и от питательной среды, имея в виду наличие в ней не только источников углерода, азота, фосфора и других элементов, но и веществ, играющих роль ин­дукторов или репрессоров биосинтеза данного конкретного фермента или их групп. Например, фермент липаза почти не синтезируется грибом на среде без индуктора, внесение кашалотового жира усиливает био­синтез фермента в сотни раз. Этот же вид гриба при добавлении в среду крахма­ла и полном исключении минерального фосфора интенсивно синтезирует другой фермент - фосфатазу.

Для интенсификации процесса роста и синтеза ферментов часто добав­ляют всевозможные вытяжки или экстракты, содержащие дополнительные фак­торы роста. К ним относятся, прежде всего, аминокислоты. Они легко проникают внутрь клетки и специфически влияют на образование фермента. Механизм их действия заключается в компенсации недостающих свободных внутриклеточных аминокислот, необходимых для синтеза фермента. Факторами роста являются также пуриновые основания и их производные, РНК и продукты ее гидролиза. Все рассмотренные факторы должны учитываться при составлении питательных сред для культивирования продуцентов ферментов. В промышленных средах в качестве источников органического углерода и азота чаще всего используют раз­личные сорта крахмала

(картофельный, кукурузный, рисовый), кукурузный экс­тракт, соевую муку и т. д. Микроорганизмы для своего роста могут утилизировать и минеральные соединения азота, которые превращаются в аммиак, необходимый для синтеза сложных азотсодержащих органических соединений.

Оптимальный состав питательной среды для каждого продуцента может быть определен двумя способами: методом эмпирического подбора и с исполь­зованием математических методов оптимизации (ЭВМ).

Все технологические процессы производства ферментных препаратов делятся на две принципиально отличные группы: в первом случае ферментация ведется глубинным методом в жидкой питательной среде, во втором использу­ется поверхностная культура, растущая на специально подготовленной рыхлой и увлажненной питательной среде.

 

^ 4. Применение ферментативных препаратов


Ферменты немикробного происхождения находят применение сравнительно реже в силу различных причин, в частности: низкой Лабильности, дороговизны, сезонности получения и других факторов. Но в ряде случаев, в отсутствие микробного аналога, для коммерческих целей выделяют ферменты растительного и животного происхождения. Примерами таких ферментов могут служить ренин животного происхождения,фицин выделенный из инжира, папаин и др. Для получения в производственном масштабе ферментов растительного и животного происхождения в последнее время с успехом используют культивирование тканей и отдельных органов. Предположительно этот метод должен значительно удешевить и соответственно увеличить удельную долю коммерческих ферментов растительного происхождения.

Хотя промышленные ферменты иногда реализуются в виде технических препаратов, определенная их часть подвергается экстракции и очистке. При этом решается несколько задач: удаляют токсичные и нежелательные метаболиты и микроорганизмы, стандартизуют активность. Таким образом обеспечивается более высокое качество препарата и его стабильность, также можно придать препарату желаемые аромат и цвет. Главная трудность возникает из-за неоднородного состава культуральных жидкостей, которые часто содержат большие количества коллоидов и имеют высокую вязкость.

По данным 1990 г., на мировом рынке коммерческий оборот от реализации технических ферментных препаратов составил 800 млн. долларов. 80% всех производимых технических ферментов используется в следующих трех отраслях промышленности: гидролиз крахмала - 40%, производство детергентов - 30%, производство сыра-10%.

Основу промышленной переработки крахмала составляет возможность его превращения в сбраживаемые сахара (глюкоза, мальтоза, изомальтоза), концентрированные сахара-сиропы (глюкоза, фруктоза) и низкомолекулярные олигосахариды-декстрины. Эти соединения используются при производстве ряда пищевых продуктов и напитков. Из существующих методов гидролиза крахмала (кислотный, ферментативный) ферментативный обладает рядом несомненных преимуществ.

^ Использование ферментов с детерагентами.Все микробные протеазы можно разделить на три класса: сериновые протеазы, металлопротеазы и кислые протеазы. Сериновые и металлопротеазы об­разуются бактериальными культурами, кислые протеазы образуют микроскопические грибы.

^ Сериновые и металлопротеазы. Эта группа ферментов довольно широко распространена среди бактерий.


Металлопротеазы используются в пивоваренной и спиртовой промышленности. При производстве пива использование протеаз связано с предотвращением образования мути, являющейся резуль­татом выпадения в осадок белковых компонентов пива. Кроме металлопротеаз для этой цели используются растительные ферменты: бромелин и папаин.

При производстве пищевого спирта ячменный солод заменяют несолодовыми зерновыми. С целью получения сбраживаемых саха­ров в среду, предназначенную для сбраживания, добавляют L-амилазу и протеазу.

Кислые протеазы. Ферменты этого типа встречаются у бактерий, но преобладают у высших грибов. Чаще всего эти ферменты, ввиду их спо­собности коагулировать молоко, используются как заменители реннина (фермент получаемый из сычуга молодняка жвачных).

Из культуры Аspergillus oryzae, осаждением органическими рас­творителями получают такадиастазу, ферментный препарат, содер­жащий кислую и нейтральную протеазы, L -амилазу, а также целлюлазы и пектиназы. Препарат используется для гидролиза соевого белка, при изготовлении очень популярного в восточных странах со­евого соуса.

У свертывающих молоко ферментов коагулирующая актив­ность должна преобладать над протеолитической активностью. Сущность процесса коагуляции заключается в образовании комп­лекса казеина с ионами Са2 . Сычуг — экстракт желудков телят содержит фермент ренин, который считается наиболее подходя­щим для этой цели протеолитическим ферментом. Замена доро­гостоящего и дефицитного сычужного фермента на дешевый и доступный фермент микробного происхождения является факто­ром, определяющим дальнейшее развитие сыродельной промыш­ленности.

Грибные протеазы широко используются для деградации клей­ковины до постоянного уровня. Это позволяет стандартизовать опе­рацию процесса хлебопечения и сократить периоды замешивания и выдержки.

Использование других ферментов (глюкозооксидаза, фруктофуранозидаза, галактозидаза, пектиназы, папаин, трипсин, химотрипсин, а также некоторые протеазы грибного и бактериального пронахождения) значительно увеличилось и практически удваивается каждые 10 лет.

В ближайшем будущем значительный рост использования фер­ментных препаратов связан с возможностью ферментативного гидро­лиза лигноцеллюлозных субстратов с целью получения сахара для пи­щевых целей. В этом направлении ведется большая работа: селектив­но отобрано свыше 200 культур микроскопических грибов, характе­ризующихся суперсинтезом внеклеточных целлюлаз; получено более 20 бактериальных культур-трансформантов, осуществляющих синтез отдельных компонентов целлюлаз (в основном эндоглюканазы); на­лажены технологии, позволяющие производить около 50 разных ком­мерческих препаратов целлюлаз, отличающихся составными целлюлазными активностями, разработаны различные технологии предоб­работки лигноцеллюлозных материалов, увеличивающие выход глю­козы в результате ферментативного гидролиза и др. Существующее положение вселяет надежду на то, что в ближайшем будущем эта важнейшая проблема будет все-таки решена. В таком случае ожида­ется массовый выпуск разных типов целлюлаз (термостабильных, действующих в щелочной среде; целлюлаз, обогащенных отдельны­ми компонентами, и др.) в количестве, превосходящем все существу­ющие масштабы современной ферментной индустрии.

Что касается производства ферментных препаратов высокой чистоты, то это магистральное направление всей отрасли, тем более что за последнее десятилетие значительно усовершенствованы ме­тоды очистки ферментов в промышленном масштабе. Это способст­вовало более широкому использованию ферментов в медицине, хотя надо отметить, что число используемых в медицинской практи­ке ферментов высокой степени чистоты не превышает нескольких десятков.

^ Иммобилизованные ферменты.Лет 20-25 тому назад считалось, что использование иммобилизованных ферментов может коренным образом изменить ферментную индустрию, в особенности пробле­мы, связанные с дороговизной и сложностью выделения ферментов. Иммобилизованные ферменты нашли самое разнообразное исполь­зование в медицине, фармацевтической, химической и пищевой про­мышленности, в аналитических целях, в качестве ферментных элек­тродов для определения концентрации Сахаров, аминокислот и дру­гих соединений. Кроме того, возможность использования иммоби­лизованных ферментов привела к созданию таких новых направле­ний, как радиоиммунный и ферментативный иммуносорбентный анализ. Однако, несмотря на это, иммобилизованные ферменты не применяются в практических целях в таких масштабах, которые предполагались.

Методы получения и типы иммобилизованных ферментов мно­гократно описаны; кроме того, им посвящен ряд обзоров и много­численные оригинальные публикации как на русском, так и на английском языках, поэтому, по мнению авторов, нецелесообразно в рамках этой книги детально рассматривать эти вопросы. Ограни­чимся тем, что лишь отметим те преимущества, которыми обладают иммобилизованные ферменты по сравнению со своими растворимы­ми аналогами:

 


иммобилизованные ферменты легко отделяются от реакционной среды и могут быть использованы повторно;


ферменты в иммобилизованном состоянии проявляют повы­шенную стабильность к экстремальным условиям и сохраняют ак­тивность в течение более длительного времени;


использование иммобилизованных ферментов позволяет раз­рабатывать непрерывные технологии;


методами иммобилизации возможно создание мультиферментныхиммобилизованных композиций, это, в свою очередь, позволя­ет осуществлять последовательные ферментные реакции разных процессов.


Иммобилизованные ферменты характеризуются и некоторы­ми недостатками. В результате иммобилизации в ряде случаев на­блюдается уменьшение удельной активности системы. Происхо­дит это в силу разных причин. Например, ковалентное связыва­ние фермента с носителем может вовлекать во взаимодействие какой-нибудь из аминокислотных остатков, находящийся в непо­средственной близости от активного центра. Иммобилизованные ферменты, ввиду фиксации ферментов на носителе, не действуют на неподвижные или нерастворимые субстраты (целлюлоза, ксилан, лигнин и др.).

Еще одним недостатком иммобилизованных ферментов явля­ется стоимость иммобилизации, которая может оказаться непри­емлемо высокой. Таким образом, при использовании иммобили­зованных ферментов приходится решать комплекс вопросов, связанных с экономической обоснованностью их практической реа­лизации.

Последнее изменение этой страницы: 2016-08-28

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...