Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Существуют ли фотоны — кванты света?

Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво состоит из неделимых частей, равных пинте.

А. Эйнштейн о различии фотонной и планковской гипотезы [73, с. 147]

Вопрос о природе волновых свойств света обсуждался ранее (§ 1.12). Теперь пришла пора обсудить природу корпускулярных проявлений света и показать, что световая волна не может быть частицей, так же, как частица — волной. Но, ведь, ранее мы утверждали, что согласно БТР свет — это поток частиц-реонов. И, вот, оказывается, свет не частица? Вот именно: одна частица это ещё не свет, так же, как один, два и даже три ореха это ещё не куча. Согласно Ритцу, свет — это волна, несомая со световой скоростью потоком из множества реонов. Иными словами, в БТР нет квантов света, — фотонов, но есть кванты электрического воздействия, — реоны. Как же тогда объяснить существование фотонов, — частиц, каждая из которых может сама по себе рождать свет? Ниже покажем, что представление о фотонах возникло в результате ошибки.

Прежде всего, в излучении и поглощении света стандартными порциями нет ничего странного. Вполне естественно, что похожие, как две капли воды, атомы будут и энергию излучать одинаковыми порциями, словно однотипные радиопередатчики, посылающие стандартные импульсы в виде "точек" и "тире". Видно, так уж устроены атомы, что, подобно радиотелеграфу, они излучают лишь дискретный ряд энергий и, подобно радиостанциям, — в дискретном диапазоне частот. Этот внутренний механизм атома пытались вскрыть многие учёные. Наибольшего успеха в этом добился непревзойдённый мастер создания моделей Вальтер Ритц, как было показано выше (§ 3.1). Предложенный им атомный механизм позволил не только объяснить прерывистый характер спектра излучения атома, но и найти весь ряд генерируемых атомом частот. В этих моделях не было фотонов и квантовых переходов, напротив, — свет в виде обычных электромагнитных волн создавался классическими колебаниями электронов в атоме.

Как известно, история фотонов, — квантов света, началась с открытия Максом Планком квантов излучения. Впервые он заговорил о квантах, столкнувшись с проблемой излучения абсолютно чёрного тела. Проблема состояла в том, что классическая теория неверно описывала спектр излучения нагретых тел, скажем, раскалённой нити в лампе. Макс Планк решил эту проблему, предположив, что энергия E осциллятора, — колеблющегося электрона в атоме, — не произвольна, а жёстко связана с частотой f его колебаний, по формуле E=hf, где h — это постоянная Планка. Но идею Планка истолковали превратно, посчитав, зачем-то, что квантование связано с самим светом, а не с излучающими его атомами, внутри которых колеблются электроны. Хотя уже тот факт, что квантовые свойства света проявляются лишь при его взаимодействии с веществом, говорил, что всё дело — в атомном механизме, а не в свете. И, вместо того, чтоб искать, по идее Планка, дискретность в недрах атома, учёные, начиная всё с того же Эйнштейна, стали саму энергию делить на части: кванты, фотоны, — частицы, в виде которых, якобы, излучался свет. А, между тем, связь энергии и частоты колебаний электрона в атоме, а, значит, и спектральный закон Планка, — прямо следует из магнитной модели атома Ритца (§ 4.1).

Интересно, что сам Планк, введя представление о квантах, опирался на взгляды Больцмана, который, по мере защиты кинетической теории газов и атомистической концепции, подобно Ритцу, осознал ошибочность теории Максвелла, оперирующей с непрерывными величинами. Больцман указал, что в уравнения Максвелла надо внести элемент прерывистости, учитывающий дискретность во взаимодействии поля с веществом и обусловленный, по мысли этого физика-атомиста, дискретностью не энергии, а материи, состоящей из стандартных атомов и других частиц. По сути, Больцман предсказал реоны Ритца, отметив, что электромагнитное воздействие должно квантоваться. И это были именно кванты электрического воздействия (реоны), а не кванты света, энергии (фотоны). Смысл термина "квант" исходно был ближе к понятию "атом", поэтому Больцман, Томсон, Планк, Штарк и другие говорили о квантах материи (атомах), квантах электричества (электронах), то есть, — о реальных частицах. И лишь по вине Эйнштейна, Бора и, отчасти, самого Планка понятие кванта стали трактовать с позиций энергетизма (§ 5.14), в форме дискретных порций энергии, а не материи или электровоздействия.

Впрочем, и сам Планк отнюдь не считал, что в процессе излучения и поглощения атомами квантов энергии возникают и исчезают какие-то частицы-сгустки света, фотоны. Он лишь говорил, что атомы хранят и выдают электромагнитную энергию дозировано, стандартными порциями. А, конкретнее, он утверждал, что энергия E электрона в атоме — пропорциональна частоте его колебаний f с коэффициентом пропорциональности h, — постоянной Планка: E=hf. Но было бы глупо считать, что и распространяется свет, будучи собран в эти порции. Это всё равно, как думать, что, при излучении одинаковыми радиопередатчиками стандартных по энергии импульсов "точек" и "тире", эти импульсы распространяются в виде частиц, в виде отдельных "тире" и "точек", собранных каждая в своей точке пространства. Ясно, что импульс радиоизлучения расходится сразу во всех направлениях — в виде широкой сферической волны.

Выводя свой закон излучения, Планк отнюдь не считал свет состоящим из квантов, фотонов, но допускал, что атомы отдают энергию порциями, и каждая порция равномерно рассеивается по всем направлениям. Планк считал, что свет — это волна, а дискретность возникает лишь при испускании и поглощении света [73, 83]. То есть, планковский закон излучения вызван не зернистой структурой света, а дискретностью вещества и процесса излучения, которое есть совокупность элементарных актов, связанных с изменением состояний электронов в отдельных атомах. Это отличие планковских квантов и фотонной гипотезы Эйнштейна было проиллюстрировано последним в форме пивной аналогии (см. эпиграф к § 4.2). И, действительно, дозированный характер излучения света и открытая Планком связь частоты колебаний электрона с энергией этих колебаний, ни в коей мере не означают, что свет распространяется и существует в виде этих порций, — абстрактных фотонов, предложенных Эйнштейном.

То же и с поглощением света. Так, С.И. Вавилов изучал столь слабые потоки света, что, после адаптации глаза к темноте, свет то наблюдался, то исчезал [82]. При этом, по мнению экспериментатора, глаз фиксировал отдельные фотоны, — тогда и наблюдался свет. Однако, опыт этот ещё не говорит о дискретной структуре света, а демонстрирует особенность нашего зрения. Аналогично, если в полной тишине пытаться расслышать слабый источник звука, скажем, тиканье наручных часов, их звук будет то исчезать, то появляться [95]. К счастью, из этого никто не заключил, что звук дискретен и состоит из квантов звука, иначе, и это могли бы истолковать как подтверждение выдуманных И. Таммом фононов. Просто, когда ухо работает на пределе слышимости, звук неразличим по громкости. Он либо слышен, либо нет, — это зависит от порога восприятия звука и напряжения внимания. Так же и глаз — это прибор с порогом чувствительности: глаз либо видит слабый источник, либо нет. Всё дело в дискретности восприятия, а не самого света. Пытаться с помощью наших грубых приборов обнаружить дискретность света (фотоны) — так же глупо, как пробовать заметить дискретность массы (атомы) цифровыми весами. При взвешивании малой массы (например, граммовой гирьки) показания весов скачут вплоть до нуля, меняясь на дискретное пороговое значение массы, составляющее обычно 1 грамм. Но, ведь, это не значит, что весы регистрируют отдельные "атомы" (весом в 1 грамм!) или вообще действие на гирьку отдельных квантов гравитации (пресловутых гравитонов). Просто значения и изменения массы, которые меньше некоторого порога, весы в принципе не способны различить и показать. Вся причина в дискретизации значений измеряющим прибором (весами, глазом, детектором), а не в дискретности самой величины.

Та же ситуация, — если использовать в качестве регистрирующего прибора не глаз, а фотоплёнку, фотоумножитель, фотодетектор, счётчик Гейгера (детектор гамма-излучения). Любой из них имеет порог чувствительности. И достаточно малой случайной вариации слабого потока света или порога чувствительности, чтобы этот порог был превышен. Тогда прибор регистрирует свет, в противном случае, сигнал начисто отсутствует. Вызван порог чувствительности тем, что реакция поглощения света идёт на атомном, молекулярном уровне. Так, в фотоумножителе и счётчике Гейгера акт регистрации начинается с одного электрона, вылетевшего из поглотившего свет атома, за счёт фотоэффекта (§ 4.3). Этот электрон, будучи разогнан электрическим полем, рождает лавину электронов, которая и регистрируется (Рис. 146). Так же, и в фотоплёнке: кристалл бромистого серебра распадается начиная с одной молекулы, получившей от света достаточно энергии. Этот распад влечёт за собой цепную (лавинную) реакцию распада всех молекул кристалла. То есть, дискретность акта поглощения связана не с прерывистой, зернистой структурой света, а — с порогом чувствительности, зернистостью приёмника, плёнки. И глаз, и прибор, в принципе, не способны различать малые интенсивности света: они либо регистрируют сигнал, либо нет. Учёные же интерпретируют это так, будто фотон либо поглощается, либо нет.

Рис. 146. Каскадный, лавинный процесс — основа работы чувствительных детекторов света. В фотоумножителе падение света частоты f приводит к выбросу из атома электрона, крутящегося с частотой f. Он и рождает лавину электронов.

 

Показателен в этом плане следующий опыт. На пути лазерного луча ставят экран с двумя тонкими прорезями, за счёт чего на фотопластинке возникает обычная интерференционная картина от двух щелей (Рис. 147). После луч лазера с помощью фильтров так ослабляют, что фотодетектор регистрирует уже не сплошной поток света, а отдельные импульсы, вызванные, как считают, попаданием в детектор отдельных фотонов. Но, хотя фотоны следуют друг за другом крайне редко, на фотопластинке снова возникает всё та же интерференционная картина. Выходит, каждый фотон, создающий на фотопластинке отдельное засвеченное зерно (из таких зёрен по прошествии времени складывается интерференционная картина), проходит сразу через обе щели (иначе откуда интерференция?). То есть, фотон обладает противоречивыми свойствами: он размазан по пространству, и в то же время, собран в одной точке (где его регистрирует фотоплёнка или фотодетектор). Учёные не могут объяснить это противоречие и говорят, что человеку просто не дано понять наш мир.

Рис. 147. Хотя свет дифрагирует на щелях как волна, изображение на фотопластинке состоит из зёрен, как от падения отдельных фотонов.

 

Но, на деле, — всё просто: надо лишь отказаться от гипотезы фотонов и принять идею Ритца, по которой свет равномерно расходится во все стороны, в виде сплошного потока частиц с периодичным, волновым их распределением в пространстве. Такой поток, даже будучи ослаблен, содержит мириады частиц и сохраняет волновые свойства, ведущие к дифракции и интерференции (§ 1.12). Поэтому, на экране всегда образуется интерференционная картина. Однако, малая интенсивность света ведёт к тому, что атомы и молекулы в регистрирующем приборе не получают энергии, достаточной для акта регистрации. И лишь в редкие моменты, в редких точках, за счёт случайных вариаций, флуктуаций потока реонов (в том числе за счёт дифракции на тепловых неоднородностях воздуха), — энергия переносимой ими волны оказывается выше пороговой. Тогда и возникают редкие импульсы в фотодетекторах, а на фотопластинке — редкие тёмные точки. Аналогично, если на земле выстроить несколько одинаковых карточных домиков, то очень слабый порыв ветра сможет повалить лишь некоторые из них, лавинно распадающиеся, начиная с единственной карты. Но это не значит, что поток ветра квантуется, а означает лишь его случайные флуктуации, завихрения на препятствиях. А дискретность связана с дискретными актами регистрации ветра: карточный домик не может развалиться наполовину: он либо стоит, либо разваливается целиком. Точно так же и слабый поток света, приводящий к лавинному распаду (начиная с одной молекулы) отдельных фотографических зёрен — не квантуется, а испытывает случайные вариации от дифракции на препятствиях, и потому затрагивает лишь отдельные зёрна: процесс регистрации оказывается вероятностным, случайным.

Особенно ярко это проявляется при регистрации гамма-излучения, источником которого служат редкие ядра атомов и микрочастицы, отчего энергия отдельных актов излучения — мала. В итоге, лишь изредка счётчик Гейгера регистрирует излучение, что интерпретируют как попадание в детектор отдельных гамма-квантов. На деле же, источник всегда испускает гамма-излучение сразу во всех направлениях, в виде сферической волны, а не гамма-квантов, как подтвердил эффект Мёссбауэра (§ 3.7). И срабатывание лишь одного-двух из множества счётчиков обусловлено малой мощностью излучения и его флуктуациями. Это видно при аннигиляции электрона и позитрона, рождающей, по квантовой теории, два гамма-кванта (§ 1.16, § 3.13). А, на деле, не всегда одновременно регистрируют излучение лишь два детектора: изредка срабатывают разом и три детектора, ещё реже — четыре, чего квантовая теория объяснить не может. Причина же — в образовании сферической волны гамма-излучения (Рис. 42), слабо действующей на детекторы, отчего шанс срабатывания сразу многих счётчиков, у которых порог чувствительности будет случайно превышен, хоть и мал, но не равен нулю.

Как видим, прерывистость регистрации света связана с его малыми флуктуациями, случайными колебаниями яркости, которые у слабого сигнала сопоставимы с самим сигналом и порогом чувствительности. Чем же вызваны эти флуктуации света? Дело тут не в колебании яркости источника, а в промежуточной среде, воздухе, малые тепловые флуктуации плотности которого ведут к рассеянию и дифракции света, за счёт чего яркость в каждой точке экрана постоянно и случайно меняется, что вызвано ещё и дрожанием лазера с экраном. Эти малые флуктуации, действительно, были обнаружены, скажем, в опыте Брауна-Твисса, но, по ошибке, были истолкованы как флуктуации числа фотонов в пучке света [82]. Особенно хорошо заметны эти случайные колебания яркости в монохроматичном луче лазера: лазерное пятно на экране разбивается на сотни мерцающих точек: излучение кажется зернистым. Но, как было показано, это вызвано не зернистостью и дискретностью света, а его малыми флуктуациями. Аналогично, тепловые флуктуации, турбулентность в атмосфере Земли приводят к мерцанию света звёзд, быстрым колебаниям их цвета и яркости (§ 2.11). Отметим, что сторонники фотонных теорий хотели и это явление истолковать, как подтверждение дискретной структуры света: будто свет звёзд столь слаб, и фотоны следуют так редко, что мы видим отдельные кванты разных цветов лишь в моменты их точного попадания в фоторецепторы — оттого и мерцание (здесь кванторелятивисты снова пошли по пути Аристотеля, объяснявшего мерцание звёзд слабостью их световых лучей, которые от малой яркости якобы дрожат и часто летят мимо глаза). Но, к счастью, связь мерцания звёзд с волнением атмосферы доказана столь надёжно, что у фотонного объяснения нет шансов.

Первый "квантовый заскок" в представлении о свете, как о фотонах, произошёл с выходом в 1905 г. работы Эйнштейна о фотоэффекте и световых квантах. Ф. Ленард, исследуя фотоэффект, открыл, что в этом процессе "вырывания" светом электронов с поверхности металла, скорость V вылета электронов зависит не от интенсивности, а от частоты f выбившего их света. Отсюда Эйнштейн заключил, что световая энергия не только при взаимодействии с атомами, но и во всех прочих процессах излучается и поглощается только порциями, квантами. Так, электрон массойm, поглощая свет, приобретает энергию mV2/2=hf одного кванта. То есть, Эйнштейн, в противоположность Планку, счёл кванты реальными частицами, фотонами, в виде которых распространяется свет, хотя, по Планку, выпуск и поглощение света (или пива) порциями ещё не доказывает, что свет состоит из квантов (а пиво — из неделимых порций).

Следующим пришёл Бор, который процесс излучения и поглощения света атомом вообще не связывал с колебаниями в нём электрона, а, значит, — и с электромагнитными волнами. Бор просто принял, что электрон скачком меняет свою энергию, отдавая или поглощая её разницу в виде кванта света. Всё это, вкупе с отказом от эфира, постепенно привело к мысли, что свет — это не просто электромагнитная волна, но частица, фотон, в форме которого свет не только излучается и поглощается, но и распространяется. В то же время, никто не думал отрицать, что свет — это волна. Так, в науку вошло осмеянное Дж. Оруэллом в романе "1984" двоемыслие, скрытое в физике под серьёзным научным термином "корпускулярно-волновой дуализм". Следуя ему, всякую волну надо одновременно считать частицей и, — наоборот, делая вид, словно, на самом деле, тут нет противоречия.

Неспособность истолковать корпускулярно-волновой дуализм света, одновременно способного интерферировать и вызывать квантовые эффекты, всегда смущала учёных. Понимая абсурдность, двусмысленность этого положения, они отмечали, что им приходится по понедельникам, средам и пятницам считать свет волной, а по вторникам, четвергам и субботам — частицей. Этот вопрос настолько неудобен, что некоторые учёные, скажем Фейнман, просто орали в ответ: "Не думай, а вбей себе в башку, что это так!". Так же и Ландау, когда ученики задавали ему подобные вопросы, называл их дураками и огрызался фразой: "Заткнись, дурак, не возникай и делай, как говорят!". Это отчаяние и бессилие учёных при объяснении противоречивых свойств света лучше всего свидетельствует об ошибочности квантовой физики и электродинамики Максвелла. Вместо того, чтобы способствовать пониманию, размышлению, нас призывают в "лучших" традициях религии веровать, ибо это абсурдно. В итоге, у всех, кто исповедует неклассическую модель мира, развивается комплекс неполноценности: они видят, что просто не могут понять природу света, осознают своё слабоумие и, потому, крайне раздражаются, когда им задают такие неудобные вопросы, которые они пожелали бы вообще забыть [111]. Впрочем, сам Эйнштейн уже к концу жизни в 1951 г. честно признался, что не может объяснить, что такое свет и световые кванты (фотоны).

В том числе, квантовая теория не может объяснить наличия у света групповой и фазовой скорости, поскольку фотоны, согласно теории Эйнштейна, движутся всегда с одной и той же скоростью c. Так же непонятно, отчего свет меняет свою скорость, попадая в преломляющую среду, хотя скорость фотонов не меняется. Все эти явления, так же как и явления распространения радиоволн, способна объяснить лишь волновая теория света. Лишь за счёт сложения, интерференции света, испущенного разными излучателями, в том числе рассеянного атомами среды, приводит к изменению фазовой скорости света, несмотря на движение несущих свет реонов с постоянной скоростью c (§ 1.12).

Так волна или частица всё же свет? Как следует из замечательной книги о природе света [83], этому вопросу уже сотни и тысячи лет. Пожалуй, первыми им серьёзно задались Демокрит и Лукреций, а, спустя два тысячелетия, — И. Ньютон. Не зря наш известный физик С.И. Вавилов счёл их идеи столь актуальными, что перевёл на русский отдельные фрагменты поэмы Лукреция "О природе вещей" [77] и трактат Ньютона по оптике [89]. Ньютон ещё в XVII веке пытался совместить волновые и корпускулярные представления о свете, но без обманного дуализма. Он допускал, что свет, распространяясь в виде корпускул, создаёт их ударами колебания атомов среды, испускающих новые корпускулы [89, с. 282]. Это роднит взгляды Ньютона с электронной теорией Лоренца, в представлении Ритца. Ведь, согласно Ритцу, колебания электронов создают переменный по силе и направлению поток частиц (Рис. 29, Рис. 30), удары которых заставляют колебаться другие электроны, создающие, в свою очередь, — вторичные волны, потоки реонов. Более того, по верному замечанию Вавилова [31], уже древние атомисты, — Демокрит, Эпикур и Лукреций, представляли свет в виде последовательных волновых фронтов, переносимых потоком мельчайших частиц, с огромной скоростью источаемых предметами (см. Часть 1, эпиграф). А последователи атомистов, Ньютон и Ломоносов, предугадали даже открытие электронов, когда говорили об атомах среды, колеблющихся под воздействием света и передающих его дальше, за счёт выброса новых светоносных частиц.

Пусть, однако, критика фотонной, корпускулярной теории света не заставит читателя впасть в другую крайность и принять представления о свете, как о волнах в неподвижной среде, эфире. Согласно БТР, свет — это и не волна в среде, и не частица, и даже не волно-частица (как в квантовой механике). По Ритцу, свет — это волна, переносимая со скоростью света вместе с потоком частиц, как бы "вмороженная" в него. Такая же волна возникает, если дать очередь из автомата, быстро водя им из стороны в сторону: пули образуют в пространстве волнообразную цепочку, движущуюся со скоростью пуль (Рис. 22). Именно такую предложенную Ритцем форму распространения света, переносимого частицами, и, в то же время, обладающего волновыми свойствами, и пытались найти многие учёные от Ньютона до Вавилова [83]. Выходит, правы были Демокрит и Лукреций, сумевшие догадаться не только о частицах тел (атомах), но и об источаемых ими светоносных частицах. И частицы эти — никакие не фотоны (кванты света), но реоны — зёрна, кванты, атомы электрического воздействия, обладающие стандартной массой.

Как видели выше, гипотеза эфира столь же беспочвенна, сколь и гипотеза фотонов (§ 3.21). Свет — это не совсем волна, и не совсем частица. Так же, и периодические сгустки-разрежения электронов в клистроне (§ 2.11) нельзя назвать просто "потоком частиц" (это огромные скопища упорядоченных в пространстве частиц), и нельзя назвать "волнами в среде". Пусть пока не все опыты объяснены без привлечения фотонов, зато разрушен миф о всесильности квантовой теории и полной беспомощности классической физики в трактовке "чисто квантовых" эффектов. Так что, теперь недолго уже ждать полного разрешения проблем классической науки. Думается, именно классический взгляд на "квантовые" явления позволит, наконец, решить такие важные задачи физики и техники, как проблема создания солнечных батарей с высоким КПД и высокотемпературных сверхпроводников, где бессильна помочь квантовая механика.

Итак, частицы всегда остаются частицами, а волны — волнами. Поэтому, бессмысленно вести двойную бухгалтерию волн-частиц (§ 4.11). Наш мир устроен просто и ясно. И лишь нежелание или неумение разобраться в сути происходящего, в природе явлений, побуждает учёных выдумывать запутанные теоретические схемы. Эти схемы противоречат принципу Оккама, ибо вводят столько новых, абсурдных, ниоткуда не следующих допущений, что их шанс оказаться верными — ничтожен. Ещё Ритц предупреждал, что нельзя принимать новые сложные гипотезы, покуда нет уверенности, что исчерпаны более простые и естественные. Остро отточенная бритва Оккама должна быть главным орудием учёного. Именно она позволяет отсечь всё лишнее, мистическое, абсурдное и разделить частицы с волнами.

Фотоэффект

При такой ситуации естественно предположить, что источник энергии отрывающихся от металла электронов заключён всё же не в лучах, а в самом металле. Что касается лучей, они лишь освобождают её, служат своего рода запалом — ведь одной искры бывает довольно, чтобы взорвать бочонок с порохом…

Макс Планк о фотоэффекте, 1919 г. [83, с. 143]

Одно из первых свидетельств корпускулярных свойств света дал фотоэффект, то есть, — вылет электронов из металла при облучении его светом. Напомним, в 1888 г. русский физик-экспериментатор А.Г. Столетов (Рис. 148) исследовал явление фотоэлектрического эффекта, установил его природу и главные закономерности. Явление не только кардинально повлияло на развитие физики, но и повлекло за собой массу открытий, изобретений. Все теле- и видеокамеры, цифровые фотоаппараты, фотоэлементы, солнечные батареи и прочие устройства, преобразующие свет в электрические воздействия и обратно, — основаны на фотоэффекте. Без него немыслима современная техника. Казалось бы, столь важное явление должно быть подробно изучено и объяснено. Но, несмотря на более чем столетнюю историю исследований, фотоэффект так и не нашёл адекватного исчерпывающего объяснения и таит ещё уйму загадок.

Рис. 148. Александр Григорьевич Столетов (1839–1896).

 

Суть фотоэффекта, как открыл Столетов, состоит в испускании металлом, под действием света, отрицательно заряженных частиц, — электронов. Первый закон фотоэффекта, открытый Столетовым, гласит: интенсивность тока электронов (фототока) из металла — пропорциональна интенсивности освещения. Из этого, полагали, естественно заключить, что именно свет даёт энергию фотоэлектронам, заставляя их вылетать из металла: чем больше света, — тем больше электронов покидает металл. Но Столетов обнаружил удивительную вещь: электроны начинали выходить из металла мгновенно, едва включали освещение [23]. Как показали расчёты, свет просто не успел бы передать электронам требуемую для выхода энергию [134]. Другой загадкой был открытый Ф. Ленардом закон, по которому скорость и энергия E фотоэлектронов зависит не от интенсивности света, а лишь от его частоты f.

Вместе эти два факта, — безынерционность фототока и независимость энергии электронов от яркости, — означали, что вовсе не свет даёт энергию электронам. И, вот, Макс Планк предположил, что фотоэлектроны получают энергию от самого металла, а свет лишь включает спусковой механизм фотоэффекта, играя роль искры, вызывающей взрыв бочонка с порохом, выстрел кремневого ружья, — атома металла, стреляющего пулями-электронами [83]. Чем больше света, — запальных искр, тем чаще раздаются выстрелы: металл чаще стреляет электронами. Но эту идею Планка забыли и приняли другую его гипотезу, которую сам он не рассматривал всерьёз: гипотезу квантов, по которой свет состоит из малых порций, сгустков энергии hf (квантов, фотонов), которые разом отдают электронам свою энергию. Квантовая гипотеза объясняет безынерционность фотоэффекта и зависимость E=hf, но не объясняет других свойств фотоэффекта и не вяжется с волновой, электромагнитной природой света (§ 4.2).

Теоретически свет, будучи электромагнитной волной, мог бы, заставив электрон колебаться, придать ему скорость и "выбить" из металла. Но, в таком случае, неясно, почему скорость электрона не зависит от яркости света, а определяется лишь его частотой. Кроме того, в опытах выяснилось, что энергия вылетевшего электрона нередко больше энергии поглощённого им света, словно энергию электрону передала не распределённая в пространстве волна, а именно фотон, световой квант, — энергетический сгусток, в малом пространстве аккумулирующий всю энергию волны [134]. Вот и решили, что только фотонам по плечу выбивать электроны из металла, потому-то энергия электронов и зависит лишь от частоты света. И, всё же, фотоэффект можно объяснить без привлечения фотонов и квантов света, если принять, следуя Планку, что "источник энергии электронов заключён всё же не в лучах, а в самом металле". В самом деле, учёные признают, что фотоэффект возможен лишь в металле: никто ещё не наблюдал аналогичного фотоэффекту действия света на одиночный электрон в вакууме. А, раз энергию электрону даёт металл, то даже слабый свет, давя на спусковой крючок фотоэффекта, способен высвободить электроны с огромной энергией, независимо от яркости. Так же, и слабое нажатие на спусковой крючок арбалета, баллисты, — высвобождает запасённую в тетиве огромную энергию, приводящую к выбросу стрелы или снаряда.

Но где же источник этой скрытой энергии? Вероятно, в атоме. На эту мысль наводит явление внутреннего фотоэффекта, — процесса, в котором связанные электроны полупроводника, оторвавшись под действием света от атомов, уже не покидают его поверхность, но свободно движутся внутри, снижая сопротивление [74]. На этом явлении основана вся фотоэлектроника: цифровые камеры, фотоаппараты и сканеры. Так вот, похоже, и при внешнем фотоэффекте происходит, в действительности, не передача энергии свободным электронам металла, а лишь вылет электронов из атомов, о чём пишут многие учебники (Рис. 149). А электрон в атоме, двигаясь по своей орбите, уже изначально обладает энергией и скоростью. Всё что остаётся сделать свету — это снять электрон с орбиты. Тогда тот, словно камень, сорвавшийся с пращи, вылетит из атома, сохранив орбитальную скорость V.

Рис. 149. Природа фотоэффекта.

 

То, что электроны обладают энергией с самого начала, неопровержимо доказывает один малоизвестный, а, возможно, и намеренно замалчиваемый эффект, открытый ещё А.Г. Столетовым, отцом фотоэффекта. Столетов обнаружил, что при длительном облучении металла, тот как бы "устаёт" — выход электронов постепенно уменьшается и может совсем сойти на нет, хотя сила света не менялась [23, сс. 385, 392]. Как же так: свет есть, электроны есть, а фотоэффект ослабевает? Квантовая физика объяснить этого не может. Но, если электроны получают энергию не от света, а обладают ей изначально, то такое явление вполне закономерно, ибо, с течением времени, источник энергии истощается. Всё меньше остаётся способных "выстрелить" атомов, "заряженных" готовыми сорваться электронами, — вот и слабеет фототок. То же явление "утомляемости" обнаружилось у внутреннего фотоэффекта. С этим его проявлением знаком каждый, кто по неосторожности подверг фотоматрицу видеокамеры или "цифровика" действию слишком яркого света, отчего работа фотоэлементов матрицы ненадолго нарушилась. Подобно слепнущему на ярком свету человеку, временно "слепнет" и фотоприбор: картинка искажается "шумами", "мурашками" (эту аналогию фотоэлемента и глаза отмечала ещё С.В. Ковалевская, наш замечательный математик и физик, как следует из книги П. Кочиной). В момент яркой вспышки атомы вещества выбрасывают почти весь свой запас фотоэлектронов, и должно пройти некоторое время, прежде чем он восстановится.

Вполне закономерно и то, что свет заданной частоты выбивает из атомов электроны со строго определённой скоростью. Свет представляет собой переменное электромагнитное поле, эффективно воздействующее на электрон лишь в том случае, если частота света f, с которой меняется поле, совпадает с частотой f обращения электрона по орбите (так и на качелях для раскачки — надо махать ногами, в такт качаниям). Атом можно уподобить циклотрону, в котором для воздействия на электрон нужно переменное поле, синхронное с круговым движением частицы (Рис. 150). От такого воздействия электрон сходит со своей орбиты и вылетает из атома, сохранив орбитальную скорость. Понятно, что эта его скорость V тем больше, чем выше была частота обращения, равная частоте f выбившего электрон света: E=MV2/2=hf. Именно такая зависимость энергии и скорости от частоты следует из магнитной модели атома Ритца (§ 3.3).

Рис. 150. Действие волны, синхронной с обращением электрона внутри атома.

 

Рассмотрим подробнее открытую Столетовым усталость фотоэффекта, — уменьшение фототока с течением времени, при постоянном уровне освещения [23]. Объяснить это можно, лишь признав, что источник энергии фотоэлектронов скрыт в металле. С течением времени этот источник истощается, как нашёл Столетов, — тем быстрее, чем сильней фототок. Квантовая теория объяснить этот эффект не может. Другой эффект, тоже проблемный для теории квант, и тоже открытый Столетовым, — это температурная зависимость фототока [23]. Оказалось, при постоянной освещённости, фототок заметно увеличивается с ростом температуры металла, причём, — задолго до того, как начинает сказываться термоэлектронная эмиссия. Если источник энергии фотоэлектронов не в свете, а в металле, то зависимость эта вполне понятна: чем выше температура металла, его энергия, тем больше электронов достаточной энергии накапливает металл.

Итак, свет воздействует не на свободные электроны металла, а на захваченные атомами и крутящиеся в их магнитном поле, если следовать магнитной модели атома (Рис. 151). Такие электроны уже обладают необходимой для вылета кинетической энергией. Падающий свет лишь изменяет их траектории так, что они покидают магнитные ловушки атомов, сохранив исходный запас энергии (в отличие от электрического удержания электронов, магнитное не меняет их энергии). Вскоре на их место приходят другие электроны, набравшие энергию в ходе теплового движения и случайных столкновений. Чем сильнее нагрет металл, тем больше таких электронов, обладающих нужной энергией и захваченных атомами. Отсюда понятна температурная зависимость фототока. Таким образом, нет принципиальной разницы между внутренним и внешним фотоэффектом: в обоих случаях свет воздействует на электроны в атомах, как в случае фотоионизации (§ 4.6). Просто, в первом случае, электроны остаются внутри образца, а, во втором, — покидают его.

Рис. 151. Движение внешнего электрона в магнитном поле B атома и критические радиусы орбит.

 

Таким образом, фотоэлектроны, вырываемые из атома электромагнитной волной, уже изначально обладают энергией E и орбитальной скоростью V, связанной с частотой f света и обращения электрона — соотношением E=MV2/2=hf. Если бы электрон удерживала на орбите электрическая кулонова сила притяжения к ядру, частота его обращения была бы пропорциональна кубу, а не квадрату скорости V. Вот почему, эта сила должна быть магнитной, а не электрической природы. И, действительно, в магнитном поле В атома на электрон действует сила Лоренца F=eVB=MV2/r. Ранее выяснили (§ 3.1, § 3.3), что в магнитном атоме с увеличением радиуса r орбиты поле меняется, как B=μ0μ/πar2, где a — расстояние между частицами в стержне, μ — их магнитный момент. Поэтому, MV2/r= eVμ0μ/πar2, откуда, домножив всё на r/2, получим MV2/2= k(V/2πr), где V/2πr — это частота f обращения электрона, а k= eμ0μ/a— некоторая константа.

Если коэффициент k равен постоянной Планка h, то приходим к общеизвестной формуле E=MV2/2= hf, связывающей энергию E фотоэлектрона — с частотой выбившего его света f. Покажем, что k=h. Для этого, в формулу k= eμ0μ/a подставим известные значения магнитного момента электрона μ= eh/4πM и расстояний a между электронами и позитронами, составляющих порядка удвоенного классического радиуса электрона a= e2/4πε02 (3×10–15 м). Отсюда k=h/ε0μ0с2=h. Строго соответствующая величина и направление магнитного поля B и закон E=hf получаются и при непосредственном рассмотрении ориентированных магнитных частиц в стержнях бипирамидального атома, имеющего форму противотанкового ежа (Рис. 108).

Атом играет роль магнитной ловушки электронов, захватывающей и длительно удерживающей их на орбите. Когда падающий свет, — электромагнитное поле, меняющееся с частотой f, попадает в резонанс с частотой обращения электрона, то заставляет его сойти с устойчивой орбиты и покинуть атом, а, затем, — металл (Рис. 149). Отрыв светом электронов от атома давно открыт во внутреннем фотоэффекте. Но, если искромётная гипотеза Планка верна, то и во внешнем фотоэффекте свет будет воздействовать лишь на пойманные атомами электроны. Именно атомы будут ружьём, пращей, баллистой, стреляющей электронами, тогда как свету отведена скромная роль спускового механизма этих метательных орудий. Итак, энергия фотоэлектронов заключена в атомах, от которых они отрываются, поэтому никто ещё не обнаружил передачи светом энергии свободному электрону. Свободный электрон, как признают сторонники квантовой теории, в принципе не може

Последнее изменение этой страницы: 2016-08-29

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...