Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Обнаружение червоточины: гравитационные волны


Как люди в «Интерстеллар» могли обнаружить червоточину? У меня как физика есть любимая версия, о которой я сейчас поведаю, выйдя за рамки непосредственных событий «Интерстеллар». Разумеется, эта лишь мои догадки, Кристофер Нолан тут ни при чем.

ЛИГО засекает всплеск гравитационных волн

В Кип-версии (позволю себе пофантазировать) за несколько десятилетий до начала событий фильма двадцатилетний Брэнд работал заместителем у директора проекта под названием ЛИГО (Laser Interferometer Gravitational-Wave Observatory – Лазерно-интерферометрическая гравитационноволновая обсерватория); см. рис. 16.1. Задачей ЛИГО было отслеживать в структуре пространства «рябь», которая доходит до Земли из отдаленных участков Вселенной. Эта рябь, которую называют гравитационными волнами, возникает, например, при столкновении черных дыр, или когда черная дыра разрывает на части нейтронную звезду, или в момент зарождения Вселенной, а также во многих других случаях.

 


Рис. 16.1. Сверху: аэрофотоснимок детектора гравитационных волн ЛИГО в Хэнфорде, Вашингтон. Снизу: центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами

 

Однажды, в 2019 году, в ЛИГО зарегистрировали самый сильный всплеск гравитационных волн за всю историю проекта (рис. 16.2). Волны колебались с амплитудой, которая несколько раз нарастала и спадала, а затем внезапно затихли. Этот всплеск длился лишь несколько секунд.

Сравнивая форму волн (рис. 16.2) с моделированием на суперкомпьютерах, профессор Брэнд и его команда сделали вывод об источнике этих колебаний.

 

Рис. 16.2. Последние 120 миллисекунд (мс) гравитационных колебаний, зарегистрированных в ЛИГО (График, построенный мной на основе моделирования Янбея Чена, Фукара и других (2011).)

 

Нейтронная звезда на орбите вокруг черной дыры

Волны исходили от нейтронной звезды, вращающейся вокруг черной дыры. Звезда весила в 1,5 раза больше Солнца, а черная дыра – в 4,5 раза больше Солнца, при этом дыра быстро вращалась. Образованный этим вращением пространственный вихрь захватил орбиту звезды, заставляя ее медленно прецессировать[58]. Прецессия стала модулировать волны, что привело к изменениям их амплитуды (рис. 16.2).

Волны расходились по вселенной, унося с собой энергию (рис. 16.3). По мере того как энергия звезды истощалась, звезда медленно, по спирали, приближалась к черной дыре. Когда дистанция между звездой и дырой сократилась до 30 километров, приливная гравитация дыры разорвала звезду на части. 97 процентов останков звезды угодило в черную дыру, а оставшиеся три процента выбросило наружу с образованием струи раскаленного газа. Затем черная дыра притянула этот газ к себе, и он перешел в аккреционный диск.

 

Рис. 16.3. Гравитационные волны, исходящие от черной дыры и звезды на ее орбите, вид из балка (Рисунок художника из ЛИГО по моему наброску.)

 

На рис. 16.4 показан результат компьютерного моделирования последних миллисекунд жизни звезды. За 10 миллисекунд до конца черная дыра вращается вокруг оси, обозначенной красной стрелкой, а звезда движется по орбите вокруг вертикальной (относительно рисунка) оси. За четыре миллисекунды до конца тендекс-линии черной дыры разрывают звезду на части. За две миллисекунды до конца пространственный вихрь черной дыры выбрасывает останки звезды наружу в экваториальной плоскости. В конце из останков начинает формироваться аккреционный диск.

 

Рис. 16.4. Последние миллисекунды жизни нейтронной звезды (Модель Франсуа Фукара и коллег, см. black-holes.org.)

 

Обнаружение червоточины

Просматривая данные, собранные ЛИГО за два последних года, профессор Брэнд и его команда обнаружили очень слабые волны, исходящие от нейтронной звезды. На звезде была мини-возвышенность высотой всего лишь в сантиметр и шириной в несколько километров (предполагается, что такие возвышенности не редкость). При вращении звезды эта возвышенность тоже вращалась, порождая волны, колеблющиеся слабо, но постоянно, день за днем.

Внимательно исследуя эти волны, профессор Брэнд выяснил, откуда они исходят. Ответ был совершенно невероятным – источник волн находился где-то на орбите вокруг Сатурна! И он всегда оставался вблизи Сатурна, как бы ни перемещались по своим орбитам Сатурн и Земля!

Нейтронная звезда около Сатурна? Невозможно! Черная дыра рядом с нейтронной звездой, и обе вращаются вокруг Сатурна? Более чем невозможно! Сатурн бы давным-давно разрушился от такого соседства. Кроме того, гравитация дыры и нейтронной звезды давно сместила бы орбиты всех планет Солнечной системы, включая Землю. Со смещенной орбитой Земля то приближалась бы к Солнцу, то отдалялась бы от него – а мы бы все поджарились, замерзли и вымерли.

И все же волны определенно исходили из окрестностей Сатурна.

Профессор Брэнд видел этому лишь одно объяснение: волны идут из червоточины, которая вращается вокруг Сатурна. А источники волн – черная дыра и нейтронная звезда – находятся по другую сторону этой червоточины (рис. 16.5). Волны расходятся от звезды и от дыры, небольшая их часть попадает в червоточину, проходит сквозь нее, распространяется по Солнечной системе и частично достигает Земли, где находится детектор гравитационных волн ЛИГО.

 

Рис. 16.5. Гравитационные волны, идущие от червоточины к Земле

 

Об этой части киносценария

В краткой форме эта история (или предыстория) присутствовала в нашей с Линдой сценарной заявке к «Интерстеллар», написанной еще в 2006 году. Однако гравитационные волны не играли особой роли ни в сценарной заявке, ни в более позднем сценарии, который написал Джона и переработал Крис. И без гравитационных волн объем сложного для понимания материала в фильме был слишком велик. Поэтому, когда Крис искал способы упростить сценарий, гравитационные волны стояли на вылет первыми. И Крис от них избавился.

Лично я тяжело переживал это решение Криса. Я был одним из основателей проекта ЛИГО в 1983 году (вместе с Райнером Вайсом из Массачусетского технологического института и Рональдом Дривером из Калтеха). Я сформулировал научные позиции ЛИГО и два десятка лет упорно работал, помогая воплотить этот проект в жизнь. Сейчас проект ЛИГО близок к готовности, и уже в этом десятилетии ожидается первая регистрация гравитационных волн.

Но аргументы Криса были столь очевидны, что я и не вздумал протестовать.

Последнее изменение этой страницы: 2016-08-20

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...