Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Методика обучения количественному счёту в разных возрастных группах: этапы, приемы и навыки счета.

 

Счет – это деятельность с конечными множествами. Счет включает в себя структурные компоненты:

- цель (выразить количество предметов числом),

- средства достижения (процесс счета, состоящий из ряда действий, отражающих степень освоения деятельности),

- результат (итоговое число): сложность представляется для детей в достижении результата счета, то есть итог, обобщение. Выработка умения отвечать на вопрос «сколько?» словами много, мало, один два, столько же, поровну, больше, чем… ускоряет процесс осмысления детьми знания итогового числа при счете.

 

В возрасте трех—шести лет дети овладевают счетом. В этот период их основная математическая деятельность — счет. В начале формирования счетной деятельности (чет­вертый год жизни) дети учатся сравнивать множества поэ­лементно, путем накладывания и прикладывания, т. е. они овладевают так называемым «дочисловым этапом» счета (А. М. Леушина). Позднее (пятый— седьмой год жизни) обучение счету также происходит только на основе практи­ческих и логических операций с множествами

 

А. М. Леушина определила шесть этапов развития счет­ной деятельности у детей. При этом первые два этапа явля­ются подготовительными. В этот период дети оперируют с множествами, не используя чисел. Оценка количества осу­ществляется с помощью слов «много», «один», «ни одного», «больше — меньше — поровну». Эти этапы характеризуются как дочисловые.

Первый этап можно соотнести со вторым и третьим годом жизни. Основная цель этого этапа — ознакомление со струк­турой множества. Основные способы — выделение отдель­ных элементов в множестве и составление множества из от­дельных элементов. Дети сравнивают контрастные множест­ва: много и один.

Второй этап также дочисловой, однако в этот период дети овладевают счетом на специальных занятиях по математике.

Цель — научить сравнивать смежные множества поэле­ментно, т. е. сравнивать множества, отличающиеся по коли­честву элементов на один.

Основные способы — накладывание, прикладывание, сравнение. В результате этой деятельности дети должны нау­читься устанавливать равенство из неравенства, добавляя один элемент, т. е. увеличивая, или убирая, т. е. уменьшая, множество.

Третий этап условно соотносится с обучением детей пя­того года жизни.

Основная цель — ознакомить детей с обра­зованием числа.

Характерные способы деятельности — срав­нение смежных множеств, установление равенства из нера­венства (добавили еще один предмет, и их стало поровну — по два, по четыре и т. д.).

Результат — итог счета, обозначенный числом. Таким об­разом, ребенок вначале овладевает счетом, а затем осознает результат — число.

Четвертый этап овладения счетной деятельностью осу­ществляется на шестом году жизни. На этом этапе происхо­дит ознакомление детей с отношениями между смежными числами натурального ряда.

Результат — понимание основного принципа натураль­ного ряда: у каждого числа свое место, каждое последующее число на единицу больше предыдущего, и наоборот, каждое предыдущее — на единицу меньше последующего.

Пятый этап обучения счету соотносится с седьмым го­дом жизни. На этом этапе происходит понимание детьми счета группами по 2, по 3, по 5.

Результат — подведение детей к пониманию десятичной системы счисления. На этом обучение детей дошкольного возраста обычно заканчивается.

Шестой этап развития счетной деятельности связан с овладением детьми десятичной системой счисления. На седь­мом году жизни дети знакомятся с образованием чисел второ­го десятка, начинают осознавать аналогию образованная лю­бого числа на основе добавления единицы (увеличения: і числа на единицу). Понимают, что десять единиц составляют один десяток. Если к нему прибавить еще десять единиц, то полу­чится два десятка и т. д. Осознанное понимание детьми деся­тичной системы происходит в период школьного обучения.

 

Вся работа по развитию счетной деятельности у дошкольников проходит строго в соответствии с требованиями программного содержания. В каждой возрастной группе детского сада обозначены задачи по развитию у детей элементарных математических представлений, в частности по развитию счетной деятельности, в соответствии с «Программой воспитания и обучения в детском саду».

 

ВО ВТОРОЙ МЛАДШЕЙ ГРУППЕ начинают проводить специальную работу по формированию элементарных математических представлений. От того, насколько успешно будет организовано первое восприятие количественных отношений и пространственных форм реальных предметов, зависит дальнейшее математическое развитие детей. Малышей не учат считать, но, организуя разнообразные действия с предметами, подводят к усвоению счета, создают возможности для формирования понятия о натуральном числе.

Программный материал второй младшей группы ограничен дочисловым периодом обучения.

 

- У детейформируются представления о единичности и множественности объектов и предметов. В процессе упражнений, объединяя предметы в совокупности и дробя целое на отдельные части, дети овладевают умением воспринимать в единстве каждый отдельный предмет и группу в целом. В дальнейшем при знакомстве с числами и их свойствами это помогает им освоить количественный состав чисел.

 

- Дети учатся образовывать группы предметов по одному, а затем и по двум-трем признакам — цвет, форма, размер, назначение и др., подбирать пары предметов. При этом образованное определенным образом множество предметов дети воспринимают как единое целое, представленное наглядно и состоящее из единичных предметов. Они убеждаются в том, что каждый из предметов обладает общими качественными признаками (цвет и форма, раз мер и цвет).

 

- Группировка предметов по признакам вырабатывает у детей умение сравнивать, осуществлять логические операции классификации. От понимания выделенных признаков как свойств предметов в старшем дошкольном возрасте дети переходят к освоению общности по количеству. У них формируется более полное представление о числах.

 

- У детейформируется представление о предметных разночисленных совокупностях: один, много, мало (в значении несколько). Они постепенно овладевают умением различать их, сравнивать, самостоятельно выделять в окружающей обстановке.

 

МЕТОДЫ И ПРИЕМЫ ОБУЧЕНИЯ

 

Обучение детей младшей группы носит наглядно-действенный характер. Новые знания ребенок усваивает на основе непосредственного восприятия, когда следит за действием педагога, слушает его пояснения и указания и сам действует с дидактическим материалом.

 

Занятия часто начинают с элементов игры, сюрпризных моментов - неожиданного появления игрушек, вещей, прихода гостей и пр. Это заинтересовывает и активизирует малышей. Однако, когдавпервые выделяют какое-то свойство и важно сосредоточить на нем внимание детей, игровые моменты могут и отсутствовать.

Выяснение математических свойств проводят на основе сравнения предметов, характеризующихся либосходными,либопротивоположными свойствами (длинный - короткий, круглый - некруглый и т. п.). Используются предметы, у которых познаваемоесвойство ярко выражено, которые знакомы детям, без лишних деталей, различаются не более чем 1-2 признаками.

Точности восприятия способствуют движения (жесты рукой), обведение рукой модели геометрической фигуры (по контуру) помогает детям точнее воспринять ее форму, а проведение рукой вдоль, скажем, шарфика, ленточки (при сравнении по длине) - установить соотношение предметов именно по данному признаку.

 

Детей приучают последовательно выделять и сравнивать однородные свойства вещей. (Что это? Какого цвета? Какого размера?) Сравнение проводится на основе практических способов сопоставления: наложения или приложения.

 

Большое значение придается работе детей с дидактическим материалом. Малыши уже способны выполнять довольно сложные действия в определенной последовательности (накладывать предметы на картинки, карточки образца и пр.). Однако, если ребенок не справляется с заданием, работает непроизводительно, он быстро теряет к нему интерес, утомляется и отвлекается от работы. Учитывая это, педагог дает детям образец каждого нового способа действия.

 

Стремясь предупредить возможные ошибки, он показывает все приемы работы и детально разъясняет последовательность действий. При этом объяснения должны быть предельно четкими, ясными, конкретными, даваться в темпе, доступном восприятию маленького ребенка. Если педагог говорит торопливо, то дети перестают его понимать и отвлекаются. Наиболее сложные способы действия педагог демонстрирует 2—3 раза, обращая внимание малышей каждый раз на новые детали. Только многократный показ и называние одних и тех же способов действий в разных ситуациях при смене наглядного материала позволяют детям их усвоить.

 

В ходе работы педагог не только указывает детям на ошибки, но и выясняет их причины. Все ошибки исправляются непосредственно в действии с дидактическим материалом. Пояснения не должны быть назойливыми, многословными. В отдельных случаях ошибки малышей исправляются вообще без пояснений. («Возьми в правую руку, вот в эту! Положи эту полоску наверх, видишь, она длиннее этой!» и т. п.) Когда дети усвоят способ действия, то его показ становится ненужным.

 

Маленькие дети значительно лучше усваивают эмоционально воспринятый материал. Запоминание у них характеризуется непреднамеренностью. Поэтому на занятиях широко используются игровые приемы и дидактические игры. Они организуются так, чтобы по возможности в действии одновременно участвовали все дети и им не приходилось ждать своей очереди. Проводятся игры, связанные с активными движениями: ходьбой и бегом. Однако, используя игровые приемы, педагог не допускает, чтобы они отвлекали детей от главного (пусть еще и элементарной, но математической работы).

 

 

Пространственные и количественные отношения могут быть отражены на этом этапе только при помощи слов. Каждый новый способ действия, усваиваемый детьми, каждое вновь выделенное свойство закрепляются в точном слове. Новое слово педагог проговаривает не спеша, выделяя его интонацией. Все дети вместе (хором) его повторяют.

Наиболее сложным для малышей является отражение в речи математических связей и отношений, так как здесь требуется умение строить не только простые, но и сложные предложения, употребляя противительный союз А и соединительный И. Вначале приходится задавать детям вспомогательные вопросы, а затем просить их рассказать сразу обо всем. Например: Сколько камешков на красной полоске? Сколько камешков на синей полоске? А теперь сразу скажи о камешках на синей и красной полосках. Так ребенка подводят к отражению связей: На красной полоске один камешек, а на синей много камешков. Воспитатель дает образец такого ответа. Если ребенок затрудняется, педагог может начать фразу-ответ, а ребенок ее закончит.

 

Для осознания детьми способа действия им предлагают в ходе работы сказать, что и как они делают, а когда действие уже освоено, перед началом работы высказать предположение, что и как надо сделать. (Что надо сделать, чтобы узнать, какая дощечка шире? Как узнать, хватит ли детям карандашей?) Устанавливаются связи между свойствами вещей и действиями, с помощью которых они выявляются. При этом педагог не допускает употребления слов, смысл которых не понятен детям.

 

В процессе разнообразных практических действий с совокупностями дети усваивают и используют в своей речи простые слова и выражения, обозначающие уровень количественных представлений: много, один, по одному, ни одного, совсем нет (ничего нет), мало, такой же, одинаковый (по цвету, форме), столько же, поровну; столько, сколько; больше, чем; меньше, чем; каждый из всех.

 

Итак, в младшем дошкольном возрасте, в дочисловой период обучения дети овладевают практическими приемами сравнения (на­ложение, приложение, составление пар), в результате которых ос­мысливаются математические отношения: «больше», «меньше», «по­ровну». На этой основе формируется умение выделять качественные и количественные признаки множеств предметов, видеть общность и различия в предметах по выделенным признакам

 

ПРОГРАММА СРЕДНЕЙ ГРУППЫ направлена на дальнейшее формирование математических представлений у детей.

 

Одна из основных программных задач обучения детей пятого го­да жизни состоит в формировании у них умения считать, выработ­ке соответствующих навыков и на этой основе развитии представ­ления о числе.

 

Сформированное в младшем дошкольном возрасте (2—4 года) умение анализировать множества предметов с точки зрения их чис­ленности, видеть последовательность и различия по качественным и количественным признакам, представление о равенстве и нера­венстве предметных групп, умение должным образом отвечать на вопрос «сколько?» (столько же, здесь больше, чем там) явля­ется основой овладения счетом.

В среднем дошкольном возрасте (пятый год жизни) в процес­се сравнения двух групп предметов, выделения их свойств, а так­же счета у детей формируются представления:

1.о числе, позволя­ющие дать точную количественную оценку совокупности, они овла­девают приемами и правилами счета предметов, звуков, движений (в пределах 5);

2.о натуральном ряде чисел (последовательности, месте числа) их знакомят с образо­ванием числа (в пределах 5) в процессе сравнения двух мно­жеств предметов и увеличения или уменьшения одного из них на единицу;

3.уделяется внимание сравнению множеств предметов по количеству сос­тавляющих их элементов (как без счета, так и в сочетании со счетом), уравниванию множеств, отличающихся одним элементом, установлению взаимосвязи отношений «больше - меньше» (если ми­шек меньше, то зайцев больше);

4.дети, овладев умением считать предметы, звуки, движения, отвечать на вопрос «сколько?», учатся определять порядок следования предметов (первый, последний, пятый), отвечать на вопрос «который?», т.е. практически пользовать­ся количественным и порядковым счетом;

5.у детей формируются умения воспроизводить множества, отсчитывая предметы по образцу, по заданному числу из большего количества, запоминать числа, представление о числе как общем признаке разно­образных множеств (предметов, звуков), они убеждаются в не­зависимости числа от несущественных признаков (например, цвета, занимаемой площади, размеров предметов и др.), используют различные способы получения равных и неравных по количеству групп и учатся видеть идентичность (тождественность), обоб­щать по числу предметы множеств (столько же, по четыре, пять, такое же количество, т.е. число).

6. формируются представления о первых пяти числах натурального ряда (порядке их следования, зависимости между смежными числами: больше, меньше), вырабатываются умения пользоваться ими в различных бытовых и игровых ситуациях.

 

 

МЕТОДЫ И ПРИЕМЫ ОБУЧЕНИЯ СЧЕТУ

 

Обучение счету в пределах 5. Обучение счету должно помочь детям понять цель данной деятельности (только сосчитав предметы, можно точно ответить на вопрос сколько?) и овладеть ее средствами: называнием числительных по порядку и соотнесением их к каждому элементу группы. Четырехлетним детям трудно одновременно усвоить обе стороны этой деятельности. Поэтому в средней группе обучение счету рекомендуется осуществлять в два этапа.

 

НА ПЕРВОМ ЭТАПЕ на основе сравнения численностей двух групп предметов детям раскрывают цель данной деятельности (найти итоговое число). Их учат различать группы предметов в 1 и 2, 2 и 3 элемента и называть итоговое число на основе счета воспитателя. Такое "сотрудничество" осуществляется на первых двух занятиях.

 

Сравнивая 2 группы предметов, расположенные в 2 параллельных ряда, одна под другой, дети видят, в какой группе больше (меньше) предметов или их в обеих поровну. Они обозначают эти различия словами-числительными и убеждаются: в группах поровну предметов, их количество обозначается одним и тем же словом (2 красных кружка и 2 синих кружка), добавили (убрали) 1 предмет, их стало больше (меньше), и группа стала обозначаться новым словом.

Дети начинают понимать, что каждое число обозначает определенное количество предметов, постепенно усваивают связи между числами (2 > 1, 1 < 2 и т. д.).

 

Организуя сравнение 2 совокупностей предметов, в одной из которых на 1 предмет больше, чем в другой, педагог считает предметы и акцентирует вниманиедетейна итоговом числе. Он сначала выясняет, каких предметов больше (меньше), а затем - какое число больше, какое меньше. Основой для сравнения чисел служит различение детьми численностей множеств (групп) предметов и наименование их словами-числительными.

 

Важно, чтобы дети увидели не только то, как можно получить последующее число (n+1), но и то, как можно получить предыдущее число: 1 из 2, 2 из 3 и т. п. (n - 1). Воспитатель то увеличивает группу, добавляя 1 предмет, то уменьшает, удаляя из нее 1 предмет. Каждый раз выясняя, каких предметов больше, каких - меньше, переходит к сравнению чисел. Он учит детей указывать не только, какое число больше, но и какое меньше (2>1, 1<2, 3>2, 2<3 и т. д.). Отношения "больше", "меньше" всегда рассматриваются в связи друг с другом. В ходе работы педагог постоянно подчеркивает: чтобы узнать, сколько всего предметов, надо их сосчитать.

Акцентируя внимание детей на итоговом числе, педагог сопровождает называние его обобщающим жестом (обведение группы предметов рукой) и именует (т.е. произносит название самого предмета). В процессе счета числа не именуются (1, 2, 3 - всего 3 грибочка).

 

Детей побуждают называть и показывать,где 1, где 2, где 3 предмета, что служит установлению ассоциативных связей между группами, содержащими 1, 2, 3 предмета, и соответствующими словами-числительными.

 

Большое внимание уделяют отражению в речи детей результатов сравнения совокупностей предметов и чисел. ("Матрешек больше, чем петушков. Петушков меньше, чем матрешек. 2 больше, а 1 меньше, 2 больше, чем 1, 1 меньше, чем 2".)

 

НА ВТОРОМ ЭТАПЕ дети овладевают счетными операциями. После того как дети научатся различать множества (группы), содержащие 1 и 2, 2 и 3 предмета, и поймут, что точно ответить на вопрос сколько? можно, лишь сосчитав предметы, их учат вести счет предметов в пределах 3, затем 4 и 5.

С первых занятий обучение счету должно строиться так, чтобы дети поняли, как образуется каждое последующее (предыдущее) число, т.е. общий принцип построения натурального ряда. Поэтому показу образования каждого следующего числа предпосылается повторение того, как было получено предыдущее число.

 

Последовательное сравнение 2-3 чисел позволяет показать детям, что любое натуральное число больше одного и меньше другого, "соседнего" (3 < 4 < 5), разумеется, кроме единицы, меньше которой нет ни одного натурального числа. В дальнейшем на этой основе дети поймут относительность понятий "больше", "меньше".

 

Они должны научиться самостоятельно преобразовывать множества предметов. Например, решать, как сделать, чтобы предметов стало поровну, что надо сделать, чтобы стало (осталось) 3 предмета вместо 2 (вместо 4) и т. п.

 

В средней группе тщательно отрабатывают счетные навыки. Воспитатель многократно показывает и разъясняет приемы счета, приучает детей вести счет предметов правой рукой слева направо; в процессе счета указывать на предметы по порядку, дотрагиваясь до них рукой; назвав последнее числительное, сделать обобщающий жест, обвести группу предметов рукой.

 

Дети обычно затрудняются в согласовании числительных с существительными (числительное один заменяют словом раз). Воспитатель подбирает для счета предметы мужского, женского и среднего рода (например, цветные изображения яблок, слив, груш) и показывает, как в зависимости от того, какие предметы пересчитываются, изменяются слова один, два. Ребенок считает: "Раз, два, три". Педагог останавливает его, берет в руки одного мишку и спрашивает: "Сколько у меня мишек?" - "Один мишка",- отвечает ребенок. "Правильно, один мишка. Нельзя сказать "раз мишка". И считать надо так: один, два..."

 

Для закрепления навыков счета используется большое количество упражнений. Упражнения в счете должны быть почти на каждом занятии до конца учебного года. Чтобы создать предпосылки для самостоятельного счета, меняют счетный материал, обстановку занятий, чередуют коллективную работу с самостоятельной работой детей с пособиями, разнообразят приемы. Используются разнообразные игровые упражнения, в том числе такие, которые позволяют не только закреплять умение вести счет предметов, но и формировать представления о форме, размере, способствуют развитию ориентировки в пространстве. Счет связывают со сравнением размеров предметов, с различением геометрических фигур и выделением их признаков; с определением пространственных направлений (слева, справа, впереди, сзади).

Детям предлагают найти определенное количество предметов в окружающей обстановке. Вначале ребенку дают образец (карточку). Он ищет, каких игрушек или вещей столько же, сколько кружков на карточке. Позднее дети учатся действовать лишь по слову. ("Найди 4 игрушки".) Проводя работу с раздаточным материалом, надо учесть, что дети еще не умеют отсчитывать предметы. Задания вначале даются такие, которые требуют от них умения считать, но не отсчитывать.

 

Применение счета в разных видах детской деятельности.

Обучая счету, не следует ограничиваться проведением формальных упражнений на занятиях. Воспитатель должен стремиться к тому, чтобы счет исполь­зовался детьми повсеместно, и число наряду с количественными и пространственными признаками предметов помогало бы детям лучше ориентироваться в окружающей действительности.

Воспитатель постоянно использует и создает различные жизненные и игровые ситуации, требующие от детей применения навыков счета. В играх с куклами, например, дети выясняют, хватит ли посуды для приема гостей, одежды для того, чтобы собрать кукол на прогулку, и пр. В игре в "магазин" пользуются чеками-карточками, на которых нарисовано определенное количество предметов или кружков. Воспитатель своевременно вносит соответствующие атрибуты и подсказывает игровые действия, включающие счет и отсчет предметов.

В быту часто возникают ситуации, требующие выполнения счета: по заданию педагога дети выясняют, хватит ли тех или иных пособий или вещей детям, сидящим за одним столом (коробок с карандашами, подставок, тарелок и пр.). Дети считают игрушки, которые взяли на прогулку. Собираясь домой, проверяют, все ли игрушки собраны. Любят ребята и просто пересчитывать предметы, которые встречаются по пути.

 

Обучение счету сопровождается беседами с детьми о назна­чении, применении счета в разных видах деятельности. Стремясь углубить представления детей о значении счета, педагог разъясняет им, для чего люди считают, что они хотят узнать, когда считают предметы. Советует детям посмотреть, что считают их мамы, папы, бабушки.

Итак, в средней группе под влиянием обучения формируется счетная деятельность, умение считать различные совокупности пред­метов в разных условиях и взаимосвязях.

 

В СТАРШЕЙ ГРУППЕ программанаправлена на расширение, углубление и обобщение у детей элементарных математических представлений, дальнейшее развитие деятельности счета.

 

- продолжается работа по формированию пред­ставлений о численности (количественная характеристика) мно­жеств, способах образования чисел, количественной оценке вели­чин путем измерения;

- дети осваивают приемы счета предметов, звуков, движений по осязанию в пределах 10, определяют количество условных мерок при измерении протяженных объектов, объемов жидкостей, масс сыпучих веществ;

- дети учатся образовывать числа путем увеличения или уменьшения данного числа на единицу, уравнивать множества по числу предметов при условии количественных разли­чий между ними в 1, 2 и 3 элемента, как и в средней группе, дети отсчитывают количество пред­метов по названному числу или образцу (числовая фигура, кар­точка) или больше (меньше) на единицу, упражняются в обоб­щении по числу предметов ряда конкретных множеств, отличающихся пространственно-качественными признаками (форма, расположение, направление счета и др.) на основе восприятия различными ана­лизаторами;

- с целью подготовки детей к счету групп их обучают умению разбивать совокупности в 4, 6, 8, 9, 10 предметов на группы по 2, 3, 4, 5 предметов, определять количество групп и число отдельных предметов;

- дети знакомятся с количественным составом чисел из единиц в пределах 5 на конкретных предметах и в процессе измерения, что уточняет и конкретизирует представление о числе, единице, месте числа в натуральном ряду чисел;

- продолжается обучение детей различению количественного и порядкового значения числа, вырабатываются умения применять количественный и порядковый счет в практической деятельности;

- в ходе сравнения множеств и чисел дети знакомятся с циф­рами от 0 до 9, они учатся относить их к числам, различать, исполь­зовать в играх.

 

МЕТОДЫ И ПРИЕМЫ ОБУЧЕНИЯ СЧЕТУ

 

Повторение пройденного. В средней группе детей учили вести счет предметов в пределах 5. Закрепление соответствующих представлений и способов действий служит основой для дальнейшего развития деятельности счета.

 

Сопоставление двух совокупностей, содержащих равное и неравное (больше или меньше на 1) число предметов в пределах 5, позволяет напомнить детям, как образуются числа первого пятка. Для того чтобы довести до сознания детей значение счета и приемов поштучного сопоставления предметов двух групп один к одному для выяснения отношений "равно", "не равно", "больше", "меньше", даются задания на уравнивание совокупностей. ("Принеси столько чашек, чтобы всем куклам хватило и не осталось лишних" и т. п.)

 

Большое внимание уделяется закреплению навыков счета; детей учат вести счет предметов слева направо, указывая на предметы по порядку, согласовывать числительные с существительными в роде и числе, именовать итог счета. Если кто-то из детей не понимает итогового значения последнего названного при счете числа, то ему предлагается обвести сосчитанные предметы рукой. Круговой обобщающий жест помогает ребенку соотнести последнее числительное со всей совокупностью предметов. Но в работе с детьми 5 лет он, как правило, уже не нужен. Детям теперь можно предлагать сосчитать предметы на расстоянии, молча, т. е. про себя.

 

Детям напоминают приемы счета звуков и предметов на ощупь. Они воспроизводят определенное количество движений по образцу и указанному числу.

 

Счет в пределах 10. Для получения чисел второго пятка и обучения счету до 10 используют приемы, аналогичные тем, которые применялись в средней группе для получения чисел первого пятка.

 

Образование чисел демонстрируется на основе сопоставления двух совокупностей предметов. Дети должны понять принцип получения каждого последующего числа из предыдущего и предыдущего из последующего (n + 1). В связи с этим на одном занятии целесообразно последовательно получить 2 новых числа, например 6 и 7. Как и в средней группе, показу образования каждого следующего числа предпосылается повторение того, как было получено предыдущее число. Таким образом, всегда сравнивается не менее чем 3 последовательных числа. Дети иногда путают числа 7 и 8. Поэтому целесообразно провести большее количество упражнений в сопоставлении множеств, состоящих из 7 и 8 элементов.

 

Полезно сопоставлять не только совокупности предметов разного вида (например, елочки, грибочки и др.), но и группы предметов одного вида разбивать на части и сопоставлять их друг с другом (яблоки большие и маленькие), наконец, совокупность предметов может сопоставляться с ее частью. ("Кого больше: серых зайчиков или серых и белых зайчиков вместе?") Такие упражнения обогащают опыт действий детей с множествами предметов.

 

При оценке численностей множеств предметов пятилетних детей еще дезориентируют ярко выраженные пространственные свойства предметов. Однако теперь не обязательно посвящать специальные занятия показу независимости числа предметов от их размеров, формы, расположения, площади, которую они занимают. Возможно одновременно учить детей видеть независимость числа предметов от их пространственных свойств и получать новые числа.

 

Умение сопоставлять совокупности предметов разных размеров или занимающих разную площадь создает предпосылки для понимания значения счета и приемов поштучного соотнесения элементов двух сравниваемых множеств (один к одному) в выявлении отношений "равно", "больше", "меньше". Например, чтобы выяснить, каких яблок больше - маленьких или больших, каких цветков больше - ноготков или ромашек, если последние расположены с большими интервалами, чем первые, необходимо либо сосчитать предметы и сравнить их число, либо сопоставить предметы 2 групп (подгрупп) один к одному. Используются разные способы сопоставления: наложение, приложение, применение эквивалентов. Дети видят: в одной из групп оказался лишний предмет, значит, их больше, а в другой - одного предмета не хватило, значит, их меньше. Опираясь на наглядную основу, они сравнивают числа (значит, 8 > 7, а 7 < 8).

 

Уравнивая группы добавлением одного предмета к меньшему их числу или удалением одного предмета из большего их числа, дети усваивают способы получения каждого из сравниваемых чисел. Рассматривание взаимосвязи отношений "больше", "меньше" поможет им в дальнейшем понять взаимно-обратный характер отношений между числами (7 > 6, 6 < 7).

 

Дети должны рассказывать, как было получено каждое число, т. е. к какому числу предметов и сколько добавили или от какого числа предметов и сколько отняли (убрали). Например, к 8 яблокам добавили 1, стало 9 яблок. Из 9 яблок взяли 1, осталось 8 яблок и т. п. Если ребята затрудняются дать четкий ответ, можно задать наводящие вопросы: "Сколько было? Сколько добавили (убрали)? Сколько стало?"

 

Смена дидактического материала, варьирование заданий помогают детям лучше понять способы получения каждого числа. Получая новое число, они сначала действуют по указанию педагога ("К 7 яблокам добавьте 1 яблоко"), а потом самостоятельно преобразуют совокупности. Добиваясь осознанных действий и ответов, педагог варьирует вопросы. Он спрашивает, например: "Что надо сделать, чтобы стало 8 цилиндров? Если к 7 цилиндрам добавить 1, сколько их станет?"

 

Для упрочения знаний необходимо чередовать коллективную работу с самостоятельной работой детей с раздаточным материалом. Ребенок сопоставляет 2 совокупности, раскладывая предметы на карточке с 2 свободными полосками. Демонстрация приемов получения нового числа (сравнение 3 соседних членов натурального ряда) обычно занимает не менее 8-12 мин, чтобы выполнение однообразных заданий не утомляло детей, аналогичная работа с раздаточным материалом проводится чаще на следующем занятии.

 

Для закрепления навыков счета в пределах 10 используют разнообразные упражнения, например "Покажи столько же". Дети находят карточку, на которой нарисовано столько же предметов, сколько показал педагог. ("Найдите столько игрушек, сколько кружков на карточке", "Кто быстрее найдет, каких игрушек у нас 6 (7, 8, 9, 10)?".) Чтобы выполнить последние 2 задания, педагог заранее составляет группы игрушек.

 

Когда детей познакомят со всеми числами до 10, им показывают, что для ответа на вопрос сколько? не имеет значения, в каком направлении ведется счет. Они в этом сами убеждаются, пересчитывая одни и те же предметы в разных направлениях: слева направо и справа налево; сверху вниз и снизу вверх. Позднее детям дают представление о том, что считать можно предметы, расположенные не только в ряд, но и самыми различными способами. Они считают игрушки (вещи), расположенные в форме разных фигур (по кругу, парами, неопределенной группой), изображения предметов на карточке лото, наконец, кружки числовых фигур.

 

Детям показывают разные способы счета одних и тех же предметов и учат находить более удобные (рациональные), позволяющие быстро и правильно сосчитать предметы. Пересчет одних и тех же предметов разными способами (3-4 способа) убеждает детей в том, что начинать счет можно с любого предмета и вести его в любом направлении, но при этом надо не пропустить ни один предмет и ни один не сосчитать дважды. Специально усложняют форму расположения предметов.

 

Если ребенок ошибается, то выясняют, какая ошибка допущена (пропустил предмет, один предмет сосчитал дважды). Воспитатель, пересчитывая предметы, может намеренно допустить ошибку. Дети следят за действиями педагога и указывают, в чем заключалась его ошибка. Делают вывод о необходимости хорошо запомнить предмет, с какого был начат счет, чтобы не пропустить ни один из них и один и тот же предмет не сосчитать дважды.

 

Итак, количественные представленияу детей 5—6 лет, сформи­рованные под влиянием обучения, носят более обобщенный характер, чем в средней группе. Дошкольники пересчитывают предметы независимо от их внешних признаков, обобщают по числу. У них накапливается опыт счета отдельных предметов, групп, использова­ния условных мерок.

Усвоенные детьми умения сравнивать числа на наглядной, ос­нове, уравнивать группы предметов по числу свидетельствуют о сформированности у них представлений об отношениях между чис­лами натурального ряда.

Счет, сравнение, измерение, элементарные действия над числами (уменьшение, увеличение на единицу) становятся доступными детям в разных видах их учебной и самостоятельной деятельности.

 

 

В программе ПОДГОТОВИТЕЛЬНОЙ К ШКОЛЕ ГРУППЕ можно выделить следующие направления:

1. Развитие счетной, измерительной деятельности: точности и быстроты счета, воспроизведения количества предметов в большем и меньшем на один от заданного их числа; подготовка к усвоению чисел на базе измерения, использование цифр в разных видах игровой и бытовой деятельности.

2. Совершенствование умений сравнивать числа, понимание от­носительности числа: при сравнении чисел 4 и 5 получается, что число 5 больше, чем 4, а при сравнении чисел 5 и 6 - 5 меньше 6. Уточнени<

Последнее изменение этой страницы: 2017-07-07

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...