Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Классификация Хокни (R. Hockney)

Классификация машин MIMD-архитектуры:

- Переключаемые — с общей памятью и с распределённой памятью.

- Конвейерные.

- Сети — регулярные решётки, гиперкубы, иерархические структуры, изменяющие конфигурацию.

В класс конвейерных архитектур (по Хокни) попадают машины с одним конвейерным устройством обработки, работающим в режиме разделения времени для отдельных потоков. Машины, в которых каждый поток обрабатывается своим собственным устройством, Хокни назвал переключаемыми. В класс переключаемых машин попадают машины, в которых возможна связь каждого процессора с каждым, реализуемая с помощью переключателей — машины с распределённой памятью. Если же память есть разделяемый ресурс, машина называется с общей памятью. При рассмотрении машин с сетевой структурой Хокни считал, что все они имеют распределённую память. Дальнейшую классификацию он проводил в соответствии с топологией сети.

Классификация Фенга (T. Feng)

В 1972 году Фенг предложил классифицировать вычислительные системы на основе двух простых характеристик. Первая — число n бит в машинном слове, обрабатываемых параллельно при выполнении машинных инструкций. Практически во всех современных компьютерах это число совпадает с длиной машинного слова. Вторая характеристика равна числу слов m, обрабатываемых одновременно данной ВС. Немного изменив терминологию, функционирование ВС можно представить как параллельную обработку n битовых слоёв, на каждом из которых независимо преобразуются m бит. Каждую вычислительную систему можно описать парой чисел (n, m). Произведение P = n x m определяет интегральную характеристику потенциала параллельности архитектуры, которую Фенг назвал максимальной степенью параллелизма ВС.

Параллельные системы также классифицируют по Хэндлеру (W. Handler), Шнайдеру (L.Snyder), Скилликорну (D. Skillicorn).

Классификация Скилликорна

Классификация Скилликорна (1989) была очередным расширением классификации Флинна. Архитектура любого компьютера в классификации Скилликорна рассматривается в виде комбинации четырёх абстрактных компонентов: процессоров команд (Instruction Processor — интерпретатор команд, может отсутствовать в системе), процессоров данных (Data Processor — преобразователь данных), иерархии памяти (Instruction Memory, Data Memory — память программ и данных), переключателей (связывающих процессоры и память). Переключатели бывают четырёх типов — «1-1» (связывают пару устройств), «n-n» (связывает каждое устройство из одного множества устройств с соответствующим ему устройством из другого множества, то есть фиксирует попарную связь), «n x n» (связь любого устройства одного множества с любым устройством другого множества). Классификация Скилликорна основывается на следующих восьми характеристиках:

1. Количество процессоров команд IP

2. Число ЗУ команд IM

3. Тип переключателя между IP и IM

4. Количество процессоров данных DP

5. Число ЗУ данных DM

6. Тип переключателя между DP и DM

7. Тип переключателя между IP и DP

8. Тип переключателя между DP и DP

Перечислено лишь ряд попыток обобщить и структурировать знания по архитектуре в области КС. Сложность решения этой задачи, скорее всего, в стремительных усовершенствованиях архитектуры самих систем и всех компонентов. Классификации не корректно описывают существующие решения уже через пару лет после своего создания.

Типы данных поддерживаемые КС

Правильно спроектировать КС можно только хорошо проанализировав потоки данных в них и основные операции с данными.

Совокупность оцифрованных сигналов, поступающих в вычислительную среду в виде временных последовательностей, характеризующих процессы, поля, многомерные образования, параметры которых подлежат исследованию и данных хранящихся в файлах представляют собой рабочие массивы КС.

В вычислительной среде данные потоки преобразуются в кластерные структуры достаточные для проведения цикла измерений. Примером таких образований может быть “окно” размером , включающее объект и сформированный из временной последовательности вектор отсчетов ( - порядковый номер), как кластер

; . . .;

Формирование окна характерно для операции идентификации параметров двухмерных и трехмерных изображений в системах с линейной разверткой. При этом t - длина строки, j - номер строки внутри кластера, a - номер первой точки кластера. Для таких типов данных характерны особые ограничения (для указанного случая - условия слитности окна), критерии допустимости и качества проводимых операций.

Классические типы данных

К классическим форматам данных, которые должна поддерживать относятся:

- беззнаковое размером байт,

- беззнаковое размером слово,

- беззнаковое размером двойное слово,

- беззнаковое размером с четверное слово,

- знаковое размером байт,

- знаковое размером слово,

- знаковое размером двойное слово,

- знаковое размером четверное слово,

- плавающее F-формата,

- плавающее D-формата,

- поле битов переменной длины,

- строки символов,

- строки цифр в зонном формате,

- строки цифр в специальном формате,

- строки цифр без знака,

- строки цифр с ведущим отдельным знаком,

- упакованные десятичные строки.

Данные типы и классические операции над ними описаны в широко известных монографиях, справочниках и учебных пособиях, но более четко и строго они представлены в технических руководствах к ЭВМ. В этих описаниях (DtaSheet) идентифицированы действия по нарушению значимости, правила округления и т.п., которые также берутся за основу. Тип данных определяет и архитектуру АЛУ.

Последнее изменение этой страницы: 2017-07-07

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...