Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Дифференциальные уравнения в частных производных

Рассмотрим функцию нескольких независимых переменных .

Частные производные 1-го порядка данной функции по переменной вычисляются по обычным правилам и формулам дифференцирования, при этом все переменные, кроме , рассматриваются как постоянные.

Обозначение: .

Частными производными 2-го порядка функции называются частные производные от ее частных производных 1-го порядка.

Обозначение: .

Пример. Найти частные производные 1-го и 2-го порядков функции .

Решение.Считая y постоянной переменной, получим:

.

Считая x постоянной, получим: .

Соответственно: , , .

Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функцию и производные (или дифференциалы) этой функции. Если независимая переменная одна, то уравнение называется обыкновенным. Если независимых переменных две или больше, то уравнение называется дифференциальным уравнением в частных производных.

Наивысший порядок производной, входящей в уравнение, называется порядком дифференциального уравнения. Например:

1. – обыкновенное дифференциальное уравнение 1-го порядка;

2. – обыкновенное дифференциальное уравнение 2-го порядка;

3. – обыкновенное дифференциальное уравнение 3-го порядка;

4. – общий вид обыкновенного дифференциального уравнения 2-го порядка;

5. – уравнение в частных производных 1-го порядка;

6. – уравнение в частных производных 2-го порядка.

Решением дифференциального уравнения называется такая дифференцируемая функция, которая при подстановке в уравнение обращает его в тождество.

1.1.1. Дифференциальные уравнения в частных производных второго порядка

Многие задачи механики и физики приводят к исследованию дифференциальных уравнений с частными производными 2-го порядка.

 

 

Например:

1) при изучении различных видов волн − упругих, звуковых, электромагнитных, а также других колебательных явлений мы приходим к волновому уравнению:

− уравнение распространения волн в стержне;

− уравнение распространения волн в плоской пластине;

− уравнение распространения волн в пространстве,

где а − скорость распространения волн в данной среде;

2) процессы распространения тепла в однородном изотропном теле, так же как и явления диффузии, описываются уравнением теплопроводности:

− уравнение распространения тепла в стержне;

− уравнение распространения тепла в плоской пластине;

− уравнение распространения тепла в пространстве,

3) при рассмотрении установившегося теплового состояния в однородном изотропном теле мы приходим к уравнению Пуассона

.

При отсутствии источников тепла внутри тела данное уравнение переходит в уравнение Лапласа

.

Приведенные уравнения называют основными уравнениями математической физики. Их подробное изучение дает возможность построить теорию широкого круга физических явлений и решить ряд физических и технических задач.

Функция , удовлетворяющая какому-либо из приведенных уравнений, называется его решением.

1.1.2. Понятие об общем решении уравнения в частных производных

Рассмотрим обыкновенное дифференциальное уравнение n-го порядка: . Его общий интеграл представляет собой некоторое семейство функций, зависящее от n произвольных постоянных . Любое частное решение получается из него, если параметрам придать определенные значения.

Рассмотрим решения некоторых дифференциальных уравнений в частных производных.

Пример 1. Пусть дано уравнение , где .

Решение. Найдем его общий интеграл, т.е. функцию ,удовлетворяющую данному уравнению. Сначала запишем это уравнение в виде: .Поскольку производная по переменной х от величины, стоящей в скобках, равна нулю, то последняя является некоторой произвольной функцией от у: . Поэтому

.

Интегрируя произвольную функцию ,получили функцию плюс произвольная функция . Таким образом, общий интеграл уравнения 2-го порядка содержит две произвольные функции.

Пример 2. Решить уравнение , где .

Решение. Проинтегрируем обе части уравнения по х:

,

где – произвольная функция.

 

Пример 3. Решить уравнение , где .

Решение. Проинтегрируем обе части уравнения по у:

,

где – произвольная функция.

Интегрируем повторно по у полученное равенство:

,

где – произвольные функции.

Пример 4. Решить уравнение , где .

Решение. Проинтегрируем обе части уравнения сначала по х, а затем по у:

,

тогда

,

где – произвольные функции.

Замечание. В отличие от общего решения обыкновенного дифференциального уравнения, зависящего от произвольных постоянных, общее решение уравнения с частными производными зависит от произвольных функций, количество которых равно порядку уравнения.

Упражнения.

Найти общее решение следующих дифференциальных уравнений с частными производными. Выполнить проверку.

1.1. .

Ответ: .

1.2. .

Ответ: .

1.3. .

Ответ: .

1.4. .

Ответ: .

1.5. .

Ответ: .

1.6. .

Ответ: .

1.7. .

Ответ: .

1.8. .

Ответ: .

1.9. .

Ответ: .

1.10. .

Ответ: .

1.11. .

Ответ: .

1.12. .

Ответ: .

Начальные и граничные условия

1.2.1. Задача Коши для дифференциальных уравнений первого порядка

Будем рассматривать случай, когда искомая функция зависит от двух переменных . Тогда уравнение 1-го порядка будет иметь вид

.

Всякое решение данного уравнения будем называть интегральной поверхностью (график решения – поверхность в пространстве с координатами ).

Для того чтобы из совокупности всех решений данного уравнения выделить некоторое частное решение, формулируется задача Коши: найти решение уравнения , удовлетворяющее условию , где – некоторая заданная функция.

Обозначим через l кривую в пространстве , задаваемую уравнениями: .

Тогда задача Коши имеет следующий геометрический смысл: среди всех интегральных поверхностей найти ту, которая проходит через заданную кривую l.

1.2.2. Задача Коши для дифференциальных уравнений второго порядка

Дифференциальные уравнения с частными производными, вообще говоря, имеют бесчисленное множество решений. Для того чтобы из этого множества выбрать то единственное решение, которое соответствует реальному физическому процессу (например, колебанию данной струны), надо задать некоторые дополнительные условия. В теории уравнений с частными производными, как и в обыкновенных дифференциальных уравнениях, задаются условия, называемые начальными и краевыми (граничными) условиями. Начальные условия в математической физике соответствуют состоянию физического процесса в начальный момент времени, который обычно принимают за . В результате возникает задача Коши:

Однако здесь есть некоторые отличия. Во-первых, начальные условия задаются для нестационарных уравнений, т.е. уравнений, описывающих нестационарные (зависящие от времени) процессы. Такими уравнениями являются, к примеру, волновые уравнения и уравнения теплопроводности. Во-вторых, задача Коши для уравнений с частными производными имеет единственное решение только в том случае, когда соответствующее уравнение рассматривается или на всей прямой, или на всей плоскости, или во всем пространстве. Например, это может быть задача о колебании бесконечной струны или о распространении тепла в бесконечном стержне. На практике к таким задачам приходят в том случае, когда имеется очень длинная струна или очень длинный стержень и интересуются процессами, происходящими далеко от концов, а влиянием концов пренебрегают. Если взять, допустим, длинный провод и слегка качнуть его в середине, то по нему влево и вправо побегут волны. Картина начнет искажаться только тогда, когда волны дойдут до концов провода и, отразившись, пойдут обратно. Следовательно, не учитывая влияния концов, мы тем самым не будем учитывать влияния отраженных волн.

Для волнового уравнения задаются два начальных условия: и . Первое условие физически задает начальную форму струны (начальные отклонения точек струны), а второе условие – начальные скорости точек струны. В случае волнового уравнения на плоскости или в пространстве задаются те же два начальных условия, только функции φ и ψ, соответственно, будут зависеть от двух или трех переменных.

Если размеры струны или стержня не очень велики и влиянием концов нельзя пренебречь, то в этих случаях одни начальные условия уже не обеспечивают единственность решения задачи. Тогда необходимо задавать условия на концах. Они называются граничными или краевыми условиями. Если в задаче заданы начальные и граничные условия, то такая задача называется смешанной.

Для уравнения колебаний струны часто задаются условия: . Эти условия физически означают, что концы струны закреплены (т.е. отклонения при и при в любой момент времени равны нулю). Можно задавать и другие условия на концах струны, например, – свободные концы струны.

Последнее изменение этой страницы: 2017-07-07

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...