Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






ОСНОВЫ ПРОИЗВОДСТВА ЦВЕТНЫХ МЕТАЛЛОВ

Цветные металлы обладают рядом характерных только для них свойств, определяющих применение их в машино- и приборостроении, несмотря на то, что встречаются они в природе гораздо реже, чем железо. Это и высокие тепло- и электропроводность, хорошая коррозионная стойкость, малый или наоборот большой удельный вес, низкая или высокая температура плавления, высокая пластичность или наоборот прочность.

Основной продукцией цветной металлургии являются слитки цветных металлов для производства проката и отливок, лигатуры (сплавы с легирующими элементами для изготовления легированных сплавов), чистые и особо чистые металлы для электроники и приборостроения.

ПРОИЗВОДСТВО МЕДИ

За год в мире производится 3 … 5 млн. тонн меди. Она обладает важными для современной техники свойствами, такими как высокие электро- и теплопроводность, пластичность, хорошая коррозионная стойкость. Около половины всего годового производства чистой металлической меди идёт на изготовление проводов, кабелей, шин и прочих токопроводящих изделий электротехнической промышленности. Вместе с тем с давних пор широко применяются сплавы меди с цинком (латуни) и с оловом (бронзы).

В настоящее время главнейшим источником для получения меди служат сульфидные руды, содержащие халькопирит (медный колчедан) CuFeS2, халькозин CuS, пирит FeS2 и сульфиды цинка, свинца, никеля, а нередко серебро и золото. Другим источником для получения меди являются окисленные медные руды, содержащие куприт Cu2O или азурит 2CuCO3×Cu(OH)2.

Указанные руды бедные. Содержание меди в них незначительно – 1 … 5%, поэтому руды перед плавкой подвергают обогащению. Обогащение флотацией позволяет выделить из руды отдельно медный концентрат, содержащий 11 … 35% меди, а также цинковый или пиритный концентраты.

Природные запасы меди постоянно сокращаются. Поэтому в настоящее время существенным становится использование металлолома и других отходов промышленности, содержащих медь. Крупнейшие промышленно развитые страны из отходов получают меди больше, чем выплавляют её из руд.

Для получения меди из руд обычно используют пирометаллургический способ, состоящий из плавки на штейн и восстановительной плавки, но некоторые руды успешно перерабатывают и гидрометаллургическим способом, например выщелачиванием серной кислотой.

Процесс производства меди наиболее распространенным, пирометаллургическим способом можно разделить на следующие этапы: измельчение медных руд, их обогащение, обжиг концентрата, получение медного штейна, переработка медного штейна, рафинирование меди (рис. 1.16).

Обогащение медных руд осуществляют методом флотации, основанном на различном смачивании водой соединений меди и пустой породы. Для обогащения образуют пульпу, состоящую из измельченной руды, воды и флотационного реагента (пихтового масла). Последний адсорбируется на частицах руды в виде пленок, не смачиваемых водой. При продувке пульпы пузырьки воздуха собираются на поверхности этих частиц и увлекают их вверх, образуя на поверхности слой пены. Смачиваемая водой пустая порода оседает на дно ванны. Пену с поверхности ванны собирают, сушат и получают концентрат с необходимым содержанием меди.

Обжиг концентрата производят при 750 … 850 °С в воздушной среде для окисления сульфидов и уменьшения содержания серы. Наиболее производительным является обжиг в кипящем слое. Измельченный концентрат загружается в окно в средней ее части, а снизу в печь через поддон подается воздух. Давление воздуха устанавливается таким, чтобы частицы концентрата находились во взвешенном (кипящем) состоянии. Обожженный концентрат «переливается» через порог печи в виде огарка. Отходящие сернистые газы очищаются в циклоне от твердых частиц и направляются в сернокислотное производство.

Получение медного штейна. Штейн в застывшем виде – это сплав сульфидов меди и железа и сульфидов цинка, свинца, никеля, содержащий 20 … 60% меди, 10 … 60% железа и до 25% серы. Жидкие штейны хорошо растворяют в себе золото и серебро, и, если эти металлы есть в руде, они почти полностью концентрируются в штейне. Цель плавки на штейн – отделение сернистых соединений меди и железа от содержащихся в руде примесей, присутствующих в ней в виде окисных соединений.

В зависимости от химического состава руды и ее физического состояния штейн получают либо в шахтных печах, если сырьем служит кусковая медная руда, содержащая много серы, либо в отражательных или дуговых электропечах, если исходным продуктом служат порошкообразные флотационные концентраты.

В качестве огнеупоров отражательных печей используют динасовые или магнезитовые кирпичи. Огнеупор выбирают в зависимости от преобладания в шихте основных или кислотных оксидов, так как соответствие состава шихты и огнеупорных материалов удлиняет срок их службы. Отражательные печи отапливают мазутом, угольной пылью или газом, вдувая топливо форсунками. Максимальная температура в головной части печи 1550 °С, в хвостовой – 1250 … 1300 °С. Шихту в эти печи загружают через отверстия в своде, расположенные вдоль печи у боковых стенок. При загрузке шихта ложится откосами вдоль стен, предохраняя кладку от прямого воздействия шлаков и газов. По мере нагрева шихты начинаются реакции частичного восстановления высших оксидов железа и меди, окисления серы и шлакообразования:

FeS + 3Fe3O4+ 5SiO2 = 5(2FeO*SiO2) + SO2;

2Cu2S + 3O2 = 2Cu2O + 2SO2.

Сульфиды меди и железа, сплавляясь, дают первичный штейн, который, стекая по откосам, изменяет свой состав, обедняясь железом и обогащаясь медью:

2FeS + 2Cu2O + SiO2 = 2FeO*SiO2 + 2Cu2S.

При этом 2FeO*SiO2 поступает в шлак, а 2Cu2S – в штейн. Штейн, имеющий плотность около 5000 кг/м3, собирается на поду печи, а шлак (плотность около 3500 кг/м3) образует второй верхний жидкий слой. Его выпускают по мере накопления через шлаковое окно, расположенное в хвостовой части печи. Выпуск штейна производят по мере его образования и потребности в нем последующего конвертерного передела.

Переработка медного штейна. Расплавленный штейн перерабатывают на черновую медь продувкой его воздухом в конвертере – горизонтально расположенном цилиндрическом сосуде из листовой стали длиной 5 … 10 и диаметром 3 … 4 м, футерованном магнезитовым кирпичом.

Переработка штейна протекает в два периода. В конвертер загружают кусковой кварц, заливают расплавленный штейн и продувают его воздухом. Воздух, энергично перемешивая штейн, окисляет сульфиды меди и железа:

2FeS + 3O2 = 2FeO + 2SO2 + 940 кДж;

2Cu2S + 3O2 = 2Cu2O + 2SO2 + 775 кДж,

при этом закись меди благодаря обменному взаимодействию вновь превращается в сульфид:

Cu2O + FeS = Cu2S + FeO.

Поэтому в первом периоде идет практически окисление только железа, а закись железа шлакуется кварцем:

2FeO + SiO2 = 2FeO*SiO2.

Образующийся шлак периодически сливают и в конвертер добавляют свежие порции медного штейна и кускового кварца. Температура заливаемого штейна составляет около 1200 °С, но за время продувки, за счет большого выделения тепла при окислении сульфидов температура повышается до 1350 °С. Продолжительность первого периода зависит от количества меди в штейне и составляет 6 … 10 ч. Добавка в воздушное дутье кислорода повышает температуру в конвертере и позволяет загружать в него холодный концентрат, заменив им некоторую часть расплавленного штейна.

Первый период закончится, когда в продуваемом штейне окислится сернистое железо. После этого тщательно удаляют шлак и продолжают продувку без добавки штейна и кварца. Воздух окисляет теперь только Cu2S, и образовавшаяся закись меди способствует появлению в конвертере металлической меди по реакции

Cu2S + 2Cu2O = 6Cu + SO2.

Второй период заканчивается, когда в конвертере весь штейн превращается в медь, на что обычно уходит 2 … 3 ч. В конвертере и во втором периоде образуется небольшое количество богатого медью шлака, который остается в нем после выливания черновой меди и перерабатывается в следующем цикле.

Черновую медь по окончании процесса, наклоняя конвертер, выпускают в ковш и разливают в изложницы. Полученную медь называют черновой, так как она содержит до 1,5% примесей железа, цинка, никеля, мышьяка, сурьмы, кислорода, серы.

Рафинирование меди. Черновая медь подвергается рафинированию для удаления примесей, ухудшающих ее качество, а также для извлечения из нее золота и серебра. В современной практике применяют огневое и электролитическое рафинирование.

Огневое (пирометаллургическое) рафинирование заключается в окислении примесей в отражательных печах при продувке черновой меди воздухом. Кислород воздуха соединяется с медью и образует оксид Cu2O, который затем реагирует с примесями металлов (Me) по реакции

Me + Cu2O = MeO + 2Cu.

Одновременно окисляется и сера:

Cu2S + 2Cu2O = 6Cu + SO2.

После этого приступают к раскислению меди – восстановлению Cu2O. Для этого медь перемешивают деревянными жердями. Бурное выделение паров воды и углеводородов способствует удалению газов и восстановлению меди:

4Cu2O + CH4 = 8Cu + 2H2O + CO2.

После огневого рафинирования чистота меди достигает 99 … 99,5%.

Электролитическое рафинирование меди проводят в ваннах, наполненных раствором сернокислой меди, подкисленным серной кислотой. Анодами служат пластины из черновой меди размером 1х1 м и толщиной 50 мм, катодами – листы толщиной 0,5 мм из чистой меди.

При прохождении тока напряжением 2 … 3 В и плотностью 100 … 400 А/м2 анод растворяется, медь переходит в раствор в виде катионов, которые затем разряжаются на катодах и откладываются слоем чистой меди.

Примеси, имеющие более отрицательный потенциал (Zn, Fe, Ni, Bi, Sb, As и др.) переходят в раствор, но не могут выделиться на катоде при наличии в нем большого количества ионов меди. Золото и серебро не переходят в раствор и оседают на дно ванны вместе с не успевшими раствориться на аноде отдельными кусочками меди, образуя шлам. В шлам переходят также соединения серы, селена и теллура. Иногда в шламе содержатся до 35% Ag, 6% Se, 3% Fe, 1% Au и другие ценные элементы. Поэтому шламы обычно перерабатывают и извлекают эти элементы.

ПРОИЗВОДСТВО АЛЮМИНИЯ

Алюминий является достаточно распространенным в природе металлом. Насчитывается 250 минералов, содержащих алюминий. Основные алюминиевые руды – это бокситы, нефелины, алуниты, каолины. В них он встречается в виде гидроокисей (АlООН, Аl(OH)3), каолинита (Al2O3×2SiO2×2H2O), корунда (Al2O3).

Основной рудой, используемой для производства алюминия, являются бокситы. Алюминий в них содержится в виде гидрооксидов Al2O3×Н2О и Al2O3×3Н2О. В руде много примесей, однако, производство экономически целесообразно при содержании глинозёма в ней не менее 12 … 14%. В нашей стране главные месторождения бокситов находятся в Ленинградской области, на Урале и в Красноярском крае.

Технологический процесс производства алюминия состоит из трех этапов: извлечение глинозема из руд, его электролиз с целью получения алюминия и рафинирование. Последовательность технологических операций приведена на рис. 1.17.

Наиболее распространённым в мировой практике способом получения глинозёма из бокситов является мокрый щелочной способ.

Существует определенная последовательность технологических операций.

Подготовка боксита, заключающаяся в прокаливании его в проходных трубчатых печах, дроблении и измельчении на дробилках, разделении по крупности на грохотах, последующем измельчении в мельницах и отделении фракции тонкого помола при помощи классификаторов.

Выщелачивание боксита, состоящее в его химическом разложении при взаимодействии с водным раствором щёлочи. Для этого измельчённый боксит загружают в автоклав и смешивают с раствором щелочи при температуре 200 … 250 °С и давлении 3 МПа. Для этого через автоклав внизу пропускают струю пара, которая перемешивает и подогревает полученную пульпу.

В результате в пульпе происходят следующие реакции

Al2O3×Н2О + 2NaOH = 2NaAlO2 + H2O.

Достаточная концентрация алюмината натрия (NaAlO2) получается в растворе примерно через 4 часа Другие компоненты боксита (SiO2, Fe2O3, TiO2 и др.) образуют осадок (красный шлам). Пульпа вытесняется из автоклава и по трубе транспортируется для дальнейшей переработки.

Отделение алюминатного раствора от красного шлама. Пульпу разбавляют водным раствором, полученным от промывки красного шлама предыдущей партии, и подвергают обработке в сгустителях (температура пульпы 90 … 100 °С). В результате этой обработки красный шлам оседает, после чего алюминатный раствор сливают и отфильтровывают (осветляют).

Разложение алюминатного раствора происходит по реакции

NaAlO3 + 2H2O = NaOH + Al(OH)3.

Процесс разложения называется выкручиванием или декомпозицией. Его производят путём медленного перемешивания (96 … 120 ч) алюминатного раствора в присутствии кристаллической гидроокиси алюминия Al(OH)3. Процесс протекает в камерах (декомпозёрах) при температуре 30 … 60 °С. В результате из алюминатного раствора выделяется кристаллическая гидроокись алюминия. Полученную пульпу подвергают сгущению. Часть сгущённой пульпы употребляют для выкручивания в следующем цикле, а основную часть пульпы фильтруют и промывают. В результате получают кристаллическую гидроокись алюминия с 3 … 4% влаги.

Обезвоживание гидроокиси алюминия (кальцинация) - завершающая стадия производства глинозема. Её проводят в трубчатых вращающихся печах длиной 50 … 70 м и диаметром около 4 м. Печь расположена с наклоном. С высокой стороны в печь поступает сырье и, проходя по всей её длине, обезвоживается топочными газами, идущими навстречу. При 40 … 200 °С материал высушивается. При 200 … 1250 °С из него удаляется гидратная вода и образуется безводная окись алюминия.

2Al(OH)3 = Al2O3 + 3H2O.

В конце печи (зоне охлаждения) температура полученного глинозёма снижается до 60 … 70 °С, и его выгружают из печи (через 1,5 часа после начала процесса кальцинации). Глинозём по трубопроводу передаётся для хранения в цех электролиза.

Вышеописанная технология позволяет получить чистый глинозём (примеси составляют не более 0,4 … 0,66%).

Следующий этап технологического процесса производства алюминия заключается в электролизе глинозема.

Электролиз глинозёма производят в жидком криолите (3NaF×AlF3 или Na3AlF6) в электролизере (рис. 1.17). Катодное устройство электролизёра 1 представляет собой ванну в стальном кожухе, футерованную изнутри угольными блоками. К угольной подине ванны подключены медные шины для подвода электрического тока.

Анодное устройство 2 представляет собой вертикально установленный угольный блок. Нижняя его часть погружена в электролит. К электролизеру подводится постоянный электрический ток силой 70 …75 кА и напряжением 4 … 4,5 В. Ток используется как в процессе электролиза, так и для разогрева электролита до температуры 1000 ºС.

Электролит состоит из расплава криолита, в котором содержится 8 … 10% глинозёма.

В процессе работы в результате разложения глинозема на подине ванны под электролитом собирается жидкий алюминий. Его называют сырцом из-за большого содержания примесей.

Завершающий этап процесса – рафинирование алюминия. Операция заключается в продувке расплава алюминия хлором. При этом образуется парообразный хлористый алюминий. Пузырьки образующихся газов адсорбируют на своей поверхности атомы примесей и выносят их на поверхность ванны металла.

После рафинирования жидкий алюминий отстаивают – выдерживают в ковше или электропечи в течении 30 … 45 мин. В результате чистота алюминия достигает 99,5 … 99,85%. Полученный алюминий разливают в изложницы и получают в итоге слитки.

Описанная выше технология требует большого количества электроэнергии. Расход энергии на 1 т металла составляет 10000 … 12000 квт-ч.

ПРОИЗВОДСТВО МАГНИЯ

Магний широко используется в металлургии при производстве чугуна, стали и цветных металлов. В технике магний применяется в виде сплавов в авиационной и автомобильной промышленности.

Магний как металл достаточно широко распространен в природе. Его содержание в земной коре составляет около 2,3%. Встречается магний в виде следующих минералов, которые и являются сырьем для его производства: магнезит – природный карбонат магния (МaСО3), содержащий 28,8% Mg; доломит – двойной карбонат магния и кальция (MgCO3 ×СаСО3), содержащий 13,2% Mg; карналлит – двойной хлорид магния и калия (MgCl2 ×KCl ×6H2O), содержащий 8,8% Mg, и бишофит – шестиводный хлорид магния (MgCl2 × 6Н2О), растворенный в морской воде и воде соленых озер.

Независимо от вида исходного сырья процесс получения магния можно разбить на три периода: подготовка сырья, получение из него магния и рафинирование. В зависимости от типа сырья магний получают термическим и электролитическим способами. Последний применяется наиболее часто.

Основным сырьем для получения магния в нашей стране является карналлит. Последовательность процесса получения магния следующая (рис. 1.18).

Обогащение карналлита. Руду измельчают, после чего обрабатывают горячей водой (T = 110 … 120 °С). При этом MgCl2 и KCl переходят в раствор, а нерастворимые примеси после выпадения в осадок удаляются. Далее раствор охлаждают в вакуум-кристаллизаторах до нормальной температуры, в результате чего из него выпадают кристаллы так называемого искусственного карналлита MgCl2×KCl×6H2O, которые при фильтровании отделяют. Полученный карналлит имеет примерно следующий состав: 32% MgCl2; 26% KCl, 5% NaCl и 37% H2O.

Обезвоживание карналлита осуществляют в две стадии. Первая стадия процесса – в кипящем слое печи. Процесс осуществляют в наклонной печи шахтного типа. Обезвоживание карналлита происходит горячим газом, поступающим в печь через большое количество отверстий в подине. Давлением газа порошкообразный карналлит интенсивно перемешивается и переносится вдоль пода вплоть до выходного окна. Такое движение создает впечатление кипения. Карналлит при этом нагревается до температуры 200 … 210 °С, обезвоживается до 3 … 4% остаточной влаги, а затем направляется на вторую стадию обезвоживания.

На этой стадии получение безводного карналлита осуществляют расплавлением его в камерной электрической плавильной печи, а затем и в подогреваемом миксере. Камерная электрическая печь и миксер представляют собой электрические печи сопротивления, в которых нагревательными элементами служит расплавленный карналлит. В плавильной печи температура карналлита достигает 520 … 550 °С. В миксере температуру расплава поднимают до 840 … 860 °С. В результате происходит полное обезвоживание карналлита, при этом часть примесей выпадает в осадок.

Электролитическое получение магния осуществляют в электролизере. Он представляет собой стальную ванну, футерованную огнеупорным кирпичом. Ванну электролизёра заполняют расплавленным электролитом (расплав обезвоженного карналлита и возвратный хлористый магний). Температуру электролита поддерживают в пределах 720 °С. Электролизёр оснащен графитовым анодом, установленным между двумя стальными катодами. Сверху ванна закрыта хлороулавливателем и полностью изолирована от сообщения с атмосферой. Так как электролит содержит соли MgCl2, KCl, NaCl и примеси других солей и окислов, то электролитическое разложение хлористого магния обеспечивается пропусканием через электролит электрического ток требуемого напряжения (2,7 … 2,8 В), ток 30 … 70 кА. Напряжение, при котором происходит разложение других соединений, содержащихся в электролите, выше, чем для хлористого магния.

В результате работы установки на аноде образуются пузырьки хлора, которые выделяются из электролита и тут же отсасываются из электролизёра. На рабочей поверхности катодов выделяются капельки металлического магния. Магний легче электролита, поэтому он всплывает на поверхность, откуда периодически удаляется вакуумными ковшами. На дно ванны осаждается шлам, содержащий окись магния и частично восстановленное железо. Шлам и отработанный электролит удаляют вакуумными насосами. В результате электролиза получают магний-сырец, содержащий до 2 … 3% примесей (окись магния, нитрид и силицид магния и т.п.)

Рафинирование магния-сырца, извлечённого из электролизёра, проводят с целью удаления примесей электролита. Рафинирование заключается в переплавке полученного магния с флюсом. Для этого магний заливают в стальной тигель и перемешивают с флюсом (борной кислотой и др.). Тигель устанавливают в электропечь и нагревают до 710 … 720 °С в течение 0,5 … 1 ч. В процессе отстаивания примеси растворяются во флюсе, всплывают и образуют шлак. После этого магний разливают в изложницы и получают слитки, чистотой 99,9%. Более глубокую очистку магния можно осуществить путем его сублимации (возгонки) в вакууме.

ПРОИЗВОДСТВО ТИТАНА

Титан считается широко распространенным в природе металлом, так как содержание его в земной коре составляет 0,6%. Уникальное сочетание свойств титана и его сплавов, таких как высокая прочность, коррозионная и химическая стойкость, малый удельный вес, высокая температура плавления используется в авиа- и судостроении, космической технике, химической промышленности и т.д.

Рудами, служащими сырьем для получения титана, в настоящее время являются ильменит FeO × TiO2 и рутил TiO2.

Известно несколько способов получения титана из руд. Схема одного из наиболее распространенных технологических процессов, исходным продуктом в которой является ильменит, приведена на рис. 1.19. Технологическая схема процесса включает следующие этапы: выделение концентрата из руды, получение двуокиси титана, получение четыреххлористого титана, восстановление титана с получением губчатого металла, рафинирование его и переплавка титановой губки в слитки.

Перед выделением концентрата из руд их дробят, и в связи с низким содержанием нужного компонента, обогащают. Титановые руды легко обогащаются флотацией, гравитацией и т.д. В результате получают ильменитовый концентрат, с содержанием двуокиси титана до 40 … 45%.

Получение концентрированной двуокиси титана достигается отделением окислов железа и пустой породы, содержание которых в ильменитовом концентрате составляет более 40%. Для этого концентрат смешивают с углем, загружают в пламенные отражательные или электрические печи и нагревают до температуры плавления чугуна (~1200 °С). В результате железо из оксидов восстанавливается, а после его науглероживания углем на подине печи образуется чугун.

FeO×TiO2+ С = Fe + TiO2 + СО.

Оксиды титана переходят в шлак, всплывающий на поверхность ванны расплавленного чугуна. Чугун и шлак выпускают из печи и раздельно разливают в изложницы. Титановый шлак, имеющий характерный белый цвет, содержит до 90% двуокиси титана, а также примеси- окислы железа, кремния, алюминия и др. Побочным продуктом процесса является чугун.

Четыреххлористый титан получают хлорированием титанового шлака. Для этого его измельчают, смешивают с углем, каменноугольной смолой (связующее) и прессуют в брикеты. Брикеты прокаливают при температуре 800 °С без доступа воздуха, а затем подвергают хлорированию в специальных печах – шахтных хлораторах. Процесс осуществляют при высокой температуре (800 … 1250 °С). В присутствии углерода хлор вступает в реакцию с двуокисью титана по реакции:

TiO2 + 2Cl2 + C = TiCl4 + CO2.

Четыреххлористый титан, представляет собой бурую жидкость с температурой кипения 1300 °С. Вместе с ним образуются хлористые соединения элементов, входящих в состав шлака в виде примесей (FeCl4, AlCl3 и др.). Разделение хлоридов осуществляют по принципу ректификации. Для этого пары смеси хлоридов пропускают через систему конденсационных установок, в которых поддерживается температура более низкая, чем температура кипения соответствующего хлорида.

Восстановление титана из хлористого соединения осуществляется чаще всего магнийтермическим методом. Процесс осуществляют в реакторах при температуре 950 … 1000 °С в атмосфере аргона. Реактор представляет собой стальную реторту диаметром и высотой несколько метров. В реактор загружают магний и подают четыреххлористый титан. В результате их взаимодействия образуется металлический титан, твердые частицы которого спекаются в пористую массу- губку.

TiCl4 + 2Mg = Ti + 2MgCl2.

Побочный продукт процесса – хлористый магний периодически сливается из реактора через летку и направляется на переработку (электролиз). Полученная губка титана в своих порах содержит в качестве примесей до 35 … 40% магния и хлористого магния.

Рафинирование титана с целью очистки его от примесей осуществляют методом вакуумной дистиляции – выдержкой при температуре 900 … 950 °С в вакууме (при остаточном давлении воздуха 0,1 Па). При этом примеси либо расплавляются, либо испаряются.

Переплавка титановой губки в слитки осуществляется методом вакуумно-дугового переплава. Для этого из губки прессованием изготавливают расходуемый электрод и осуществляют переплав его в вакууме на установке, аналогичной рассмотренной ранее в разделе рафинирования стали. Чистота полученных слитков титана составляет 99,6 … 99,7%.

Вопросы для текущего контроля знаний по разделу

1. Какие материалы, применяемые в машино- и приборостроении вы знаете?

2. Что представляют собой черные сплавы, какие черные сплавы вы знаете?

3. Что такое цветные сплавы, какие цветные сплавы вы знаете?

4. Какие неметаллические материалы вы знаете?

5. Что такое металлургическое производство, каковы его задачи?

6. Какие виды продукции выпускает черная металлургия?

7. Какие материалы являются исходными при производстве чугуна?

8. Что в металлургии называют шихтой?

9. Как устроена и работает доменная печь?

10. Какие недостатки способа получения железоуглеродистых сплавов в доменной печи вы знаете?

11. Что является сырьем при производстве стали?

12. Какова последовательность протекания физико-химических реакций в сталеплавильной печи?

13. Какие этапы технологического процесса выплавки стали в металлургической печи вы знаете?

14. Какова сущность способа производства стали в кислородном конвертере, как устроен и работает кислородный конвертер?

15. Перечислите достоинства и недостатки способа производства стали в кислородном конвертере?

16. Как осуществляют выплавку стали в мартеновской печи?

17. Расскажите, как устроена и работает мартеновская печь?

18. На какие периоды делится процесса плавки в мартеновской печи?

19. Каковы достоинства и недостатки мартеновской печи?

20. Какие электропечи, предназначенные для выплавки стали вы знаете?

21. Что является источником тепла в дуговой электрической печи?

22. Как устроена и работает дуговая электропечь для выплавки стали?

23. Каковы достоинства и недостатки дуговой электрической печи?

24. Что является источником тепла в индукционной электрической печи?

25. На каком принципе построена работа индукционных электрических печей для выплавки стали?

26. Как устроена и работает индукционная электрическая печь?

27. Назовите преимущества и недостатки индукционной печи?

28. Какие способы прямого восстановления железа из руд вы знаете?

29. Расскажите о методе внедоменного получения железа, реализованном на Оскольском металлургическом комбинате?

30. Каким образом в сталь попадают примеси?

31. Какие методы повышения качества стали вы знаете?

32. В чем заключается метод рафинирующей обработки стали синтетическими шлаками?

33. В чем заключается метод вакуумной дегазации стали при рафинирующей ее обработке?

34. Как осуществляется электрошлаковый переплав при рафинировании стали?

35. В чем состоит сущность способа вакуумно-дугового переплава и как он влияет на качество стали?

36. Какие методы разливки стали вы знаете?

37. Какая оснастка используется для разливки стали?

38. Как осуществляется разливка стали при заполнении изложниц сверху, какие преимущества и недостатки имеет этот метод?

39. Что представляет собой метод разливки стали сифоном, какие преимущества и недостатки он имеет?

40. Каким образом разливают сталь на машинах для непрерывной разливки, какие преимущества и недостатки он имеет?

41. Какие основные виды продукции цветной металлургии вы знаете?

42. Как в настоящее время осуществляют производство меди?

43. Расскажите о технологическом процессе производства алюминия?

44. В какой последовательности выполняют операции при производстве магния?

45. Как выглядит наиболее распространная в настоящее время схема технологического процесса производства титана?


Последнее изменение этой страницы: 2016-08-17

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...