Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ОСНОВНЫХ ВИДОВ ПРОКАТА

Основным оборудованием прокатных цехов являются прокатные станы. Заготовку в прокатном производстве называют полосой.

Схема расположения технологического оборудования прокатного стана зависит от вида выпускаемой продукции. На рис. 3.23 приведена схема производства изделий сортового проката. Исходной заготовкой в этом случае является стальной слиток массой до 60 т. Слиток нагревают в нагревательных колодцах 1 и подают на слитковоз, который привозит и укладывает слиток 2 на приемный рольганг блюминга 3. После прокатки на блюминге получают полупродукт квадратного сечения (от 140х140 до 400х400 мм), называемый блюмом 4. Блюм, двигаясь по рольгангу, проходит машину огневой зачистки, где производится зачистка поверхностных дефектов, и подается к ножницам, где режется на мерные заготовки. Далее блюм поступает (иногда после дополнительного нагрева) на заготовочный стан 5, где производится прокатка на блюмы сечением от 50х50 до 150х150 мм, и затем - непосредственно на сортопрокатный стан. Для получения требуемого профиля заготовка проходит ряд клетей с калиброванными валками. На рис. 3.23 представлено полунепрерывное расположение клетей сортопрокатного стана. В первой группе (6, 7, 8) заготовка прокатывается непрерывно, т.е. находится в них одновременно, а во второй группе (9, 10) осуществляется последовательная прокатка.

На сортовых станах заготовка последовательно проходит через ряд калибров. Разработка системы последовательных калибров, необходимых для получения того или иного профиля, является сложной задачей. Число калибров зависит от сложности профиля и разности размеров поперечных сечений исходной заготовки и конечного изделия. Так для получения рельсов необходимо пропустить полосу через систему из девяти калибров (рис. 3.24).

Рис. 3.23. Схема производства сортового проката:

1- нагревательный колодец, 2- слиток, 3- блюминг, 4- блюм, 5- заготовочный стан, 6,7,8,9,10- клети сортопрокатного стана

Полученный прокат требуемого профиля разрезают на заданную длину, охлаждают, правят в холодном состоянии, обрабатывают термически и удаляют поверхностные дефекты.

Технология производства листового проката аналогична. Нагретый слиток прямоугольного сечения обрабатывают на обжимных и заготовительных станах. Далее полосу прокатывают в многовалковых клетях листопрокатных станов.

Рис. 3.24. Калибры для прокатки рельсов

Трубопрокатные станы применяют для производства бесшовных и сварных труб. Прокатка бесшовных труб включает две стадии: получение пустотелой гильзы из круглого проката и из пустотелой гильзы готовой трубы. Пустотелые гильзы получают на прошивном стане, а для труб большого диаметра - центробежным литьем. Прошивной стан (рис. 3.25) работает по принципу поперечно- винтовой прокатки. Он имеет два бочкообразных рабочих валка, расположенных под углом 4 … 6° относительно друг друга. Валки вращаются в одном направлении. Для удержания заготовки между рабочими валками имеются направляющие линейки или холостые валки. При вращении рабочих валков заготовка втягивается в зону деформации. По мере продвижения заготовки зазор между валками уменьшается, а окружная скорость на ее поверхности возрастает. Это приводит к скручиванию заготовки, уменьшению ее диаметра и появлению в металле больших внутренних напряжений. Металл в центре заготовки становится рыхлым и сравнительно легко прошивается оправкой.

Для получения из пустотелой гильзы готовой трубы ее прокатывают на пилигримовом стане (рис. 3.26, а). Рабочие валки 3 пилигримового стана вращаются в разные стороны с одинаковой скоростью. При этом направление вращения валков противоположно направлению подачи заготовки 1. Профиль валков переменный, вследствие чего сечение калибра, имеющего форму окружности, непрерывно изменяется при каждом обороте валков. При максимальном размере калибра заготовка с оправкой 2 продвигается в валки на величину подачи. Зев калибра валков 3 захватывает часть гильзы и обжимает ее своей рабочей частью (рис. 3.26, б). После того как валки сделают полный оборот и возвратятся в исходное положение, оправку с заготовкой поворачивают на 90° и снова подают в валки для обжатия. Процесс продолжается до тех пор, пока не будет прокатана вся гильза. Дальше трубы обрабатывают на специальной машине для устранения овальности и разностенности, а затем прокатывают на калибровочном стане для получения окончательных размеров.

Существуют и другие способы прокатки труб, в частности автоматический трубопрокатный стан.

Сварные трубы, диаметр которых достигает 2500 мм, значительно дешевле бесшовных, но менее прочны и долговечны. Для изготовления сварных труб используют плоские горячекатаные полосы (штрипсы), свернутые в рулон 1 (рис. 3.27). Для обеспечения непрерывности процесса передний конец штрипса сваривается с задним концом предыдущего рулона.

Рис. 3.27. Схема производства труб непрерывной печной сваркой:

1- рулон заготовки, 2- правúльная машина, 3- нагревательная печь, 4- формовочно- сварочный стан, 5,6- обжимные клети

Процесс состоит из операций свертывания заготовки в трубу, сварки, калибровки, отделки и правки. Подача концов штрипсов к месту сварки производится при помощи тянущих роликов листоправильной машины 2. Непрерывный штрипс проходит через нагревательную печь тоннельного типа 3, где нагревается до температуры 1320 … 1400 °С. По выходе из печи с поверхности штрипса удаляют окалину (сжатым воздухом). Непосредственно за печью устанавливают многоклетьевой формовочно - сварочный стан 4, в клетях которого штрипс сворачивается в полный круг по схеме показанной на рис. 3.28. Затем кромки сжимаются и свариваются. В последующих клетях 5,6 происходит обжатие трубы до требуемого размера. Для сварки труб применяют печной, электрический и газовый нагрев кромок полосы. Собственно процесс сварки кромок сформованной трубной заготовки представляет собой процесс кузнечной сварки, заключающейся в использовании способности к межатомному сцеплению сдавливаемых поверхностей металлов, нагретых до высокой температуры. Трубы большого диаметра изготовляют преимущественно с применением автоматической дуговой сварки под флюсом.

В настоящее время большое распространение получил также способ изготовления труб свертыванием полосы по спирали.

Технологии изготовления специальных видов проката разнообразны. Наиболее часто используют прокатку периодических профилей, которые применяют как фасонную заготовку для последующей штамповки и как заготовку под окончательную механическую обработку. Периодические профили в основном изготовляют поперечной и поперечно-винтовой прокаткой. Используют также специальные станы, одна из схем которых приведена на рис. 3.29. Здесь заготовка деформируется тремя валками, вращающимися в одном направлении. Валки по мере движения копировальной линейки сближаются или расходятся, изменяя диаметр прокатываемой заготовки по длине.

На станах поперечно-винтовой прокатки изготавливают также заготовки шаров и сферических роликов подшипников качения (рис. 3.30). Валки 2 и 4 здесь вращаются в одну и ту же сторону. Ручьи валков, образующих калибры соответствующей формы, выполнены по винтовой линии. Заготовка 1 при прокатке получает вращательное и поступательное движения. Удерживается она в зоне деформации с помощью центрирующих упоров 3.

ПРЕССОВАНИЕ

Прессование-это вид обработки металлов давлением, позволяющий изготавливать разнообразные профили из черных и цветных металлов постоянного поперечного сечения по длине (рис. 3.31). При прессовании металл заготовки деформируется с помощью инструментальной оснастки, состоящей из матрицы, пуансона и контейнера (рис. 3.32). Прессование заключается в продавливании с помощью пуансона 1 через отверстие в матрице 4 заготовки 3, находящейся в замкнутой полости (контейнере) 2. Форма и размеры прессованного профиля определяются конфигурацией отверстия матрицы.

Прессование называют также выдавливанием. Процесс прессования, выполняемый по схеме, представленной на рис. 3.32, называется прямым. В этом случае направление выхода металла через отверстие матрицы совпадает с направле нием движения пуансона.

При обратном прессовании (рис. 3.33) металл заготовки 3 вытекает в направлении, обратном перемещению пуансона 5. Для этого матрицу 4 устанавливают в конце полого пуансона, а заготовку 3 помещают в глухой контейнер 2, запирают упорной шайбой 1 и при прессовании остается неподвижной. Трение металла о поверхность контейнера снижается, в связи с чем обратное прессование, которое называют еще встречным, требует меньших усилий.

Прессованием изготовляют не только сплошные профили, но и полые (рис. 3.34). В этом случае заготовка 4, размещенная в контейнере 2, сначала прошивается иглой 6, проходящей через полый пуансон 1. При дальнейшем перемещении пуансона 1металл выдавливается в виде трубы через кольцевой зазор между стенками отверстия в матрице 5 и иглой 6.

В последнее время находит применение гидравлический метод прессования, который называют еще гидроэкструзией (рис. 3.35). Заготовка 5, помещенная в контейнере 3, плотно заходит в конус матрицы 7. Контейнер закрывают крышкой 1 с затвором 2 и уплотняют прокладками 8. Через отверстие 4 в контейнер нагнетается жидкость 6 под высоким давлением, которая выдавливает заготовку через матрицу. В данном случае металл заготовки находится в состоянии всестороннего сжатия жидкостью и деформируется с минимальными потерями на трение. Этот способ позволяет обрабатывать очень хрупкие сплавы.

Исходной заготовкой при прессовании обычно является слиток или прокат. Для повышения качества поверхности изделия и снижения величины трения заготовку предварительно обтачивают на станке, а после нагрева поверхность очищают от окалины.

При прессовании металл подвергается всестороннему неравномерному сжатию. При такой схеме деформирования металл наиболее пластичен. Степень деформации при прессовании характеризуется коэффициентом вытяжки. Он определяется как отношение площади сечения заготовки к площади сечения прессуемого профиля. Вытяжка при прессовании составляет 10 … 50. Прессованием обрабатывают как пластичные, так и малопластичные сплавы: медные, алюминиевые, магниевые, титановые, углеродистые и легированные стали и т.п. Первые из них деформируют без нагрева, вторые в горячем состоянии.

Сортамент прессованных профилей очень разнообразен. Среди прочего таким способом изготавливают проволоку диаметром 5 … 10 мм, прутки диаметром 3 … 250 мм, трубы диаметром 20 … 400 мм со стенкой толщиной 1,5 … 12 мм, профили с полкой толщиной 2 … 2,5 мм и линейными размерами поперечных сечений до 200 мм.

К числу главных преимуществ, которыми отличается процесс прессования, следует отнести следующие.

1) Точность изделий выше, чем при прокатке, что позволяет использовать их без дальнейшей механической обработки.

2) Высокая производительность процесса (скорость выдавливания изделия из отверстия матрицы в некоторых случаях может достигать 20 м/с).

3) Возможность получения сложных профилей, которые невозможно получить другими видами обработки металлов давлением.

4) Прессованием можно обрабатывать такие сплавы, которые ввиду низкой пластичности другими видами обработки давлением деформировать невозможно или затруднительно.

5) Гибкость процесса и легкость переналадки на изготовление другого профиля, т.к. для этого требуется только замена матрицы.

6) Достаточно высокое качество поверхности при холодном прессовании, что позволяет отказаться от отделочных операций.

Прессование имеет и недостатки.

1) наличие отходов металла, так как весь он не может быть выдавлен из контейнера и в нем остается так называемый пресс-остаток, который после окончания прессования отрезается от полученного профиля. Масса пресс – остатка обычно составляет 8 … 12%, но в некоторых случаях может быть и очень большой. Так при прессовании труб большого диаметра масса пресс – остатка может достигать 40% массы исходной заготовки.

2) Большой износ инструмента, т. к. работает он в исключительно тяжелых условиях, испытывая кроме больших давлений действие высоких температур.

3) Высокая стоимость инструмента для прессования, т.к. изготавляют его из высококачественных инструментальных сталей и жаропрочных сплавов.

ВОЛОЧЕНИЕ

Волочение это вид обработки металлов давлением, при котором формоизменение заготовки 2 осуществляется за счет ее протягивания через постепенно сужающееся отверстие в специальном инструменте, называемом волочильной матрицей 1 (рис. 3.36). При этом уменьшается площадь поперечного сечения заготовки и увеличивается ее длина. Изделие приобретает профиль, соответствующий конфигурации отверстия матрицы.

Волочением обрабатывают катанные и прессованные заготовки из стали, цветных металлов и их сплавов как в горячем виде, так и в холодном. В результате получают самые разнообразные профили (рис. 3.37). В отличие от прессования волочением невозможно получить пустотелый профиль (трубу) из заготовки сплошного поперечного сечения. В этом случае необходимо иметь пустотелую заготовку. Волочением труб по схеме, указанной на рис. 3.36 (т.е. с помощью только матрицы), не удается изменить толщину стенки изделия. При необходимости деформирования стенки пустотелой заготовки внутрь ее помещают дополнительный инструмент – оправку. Оправки бывают подвижными (недеформируемыми и деформируемыми) (рис. 3.38 а, б), закрепленными (рис. 3.38 в) и самоустанавливающимися (рис. 3.38 г). Применение оправок позволяет также повысить качество внутренней поверхности трубы.

Особенностью процесса волочения является приложение постоянного растягивающего усилия к части заготовки, вытягиваемой из матрицы. Для предотвращения ее обрывов необходимо создать условия, при которых формоизменение заготовки будет происходить только в зоне деформации, расположенной внутри матрицы. Пластическая деформация переднего конца изделия должна быть исключена. Это достигается конструкцией отверстия матрицы, выбором размеров заготовки и подбором смазки. Для того, чтобы заготовку не оборвало, необходимо добиться, чтобы растягивающие напряжения в ней не превышали величины 0,6 σВ (временного сопротивления) материала заготовки. Количественно деформацию при волочении можно оценить коэффициентом вытяжки - отношением площади исходного попереч ного сечения к конечному.

В связи с тем, что на выходящем из волочильной матрицы конце изделия пластическая деформация недопустима, величина коэффициента вытяжки ограничена, и при обработке в холодном состоянии не должна превышать за один проход значения 1,05 … 1,5. В связи с низким коэффициентом вытяжки обычно для получения необходимых размеров профилей процесс волочения повторяют многократно через ряд постепенно уменьшающихся отверстий, а для восстановления пластичности металл, упрочненный волочением, подвергают промежуточному рекристаллизационному отжигу после одного - двух переходов.

Сортамент изделий, изготовляемых волочением, очень разнообразен. Это проволока диаметром 0,002 … 10 мм, разнообразные фасонные профили, примеры которых показаны на рис. 3.37, прутки диаметром 3 … 150 мм, трубы диаметром от капиллярных до 500 мм и с толщиной стенки 0,1 … 10 мм, сегментные, призматические и фасонные шпонки, шлицевые валики.

Инструментом для волочения являются волочильные матрицы и оправки. Их изготавливают из инструментальных сталей, металлокерамических и минералокерамических сплавов и технических алмазов (для волочения проволоки диаметром менее 0,2 мм).

Волочение производят на волочильных станах. Они бывают периодического и непрерывного действия. Из станов периодического действия наиболее распространены цепные станы (рис. 3.39). Конец заготовки 7 пропускается через отверстие в матрице 8и захватывается клещами 6, которые закреплены на каретке 5. Перемещение каретки по станине 1 происходит при зацеплении крюка 2 за ось бесконечной пластинчатой цепи 3, приводимой в движение от электродвигателя. Когда изделие выходит из матрицы, натяжение между крюком и цепью уменьшается и противовес 4 поднимает крюк и отсоединяет его от цепи.

Станы периодического действия просты в устройстве и эксплуатации, однако длина обрабатываемой здесь заготовки невелика (6 … 7 метров), а скорость процесса небольшая - 10 … 20 м/мин.

Станы непрерывного действия более быстроходны и позволяют обрабатывать заготовки длиной десятки тысяч метров.

Из непрерывных станов чаще всего встречаются барабанные (рис. 3.40). Такие станы обрабатывают заготовку 1, свернутую в бухту. Бухту размещают на размоточном столе 2, передний конец заготовки пропускают через волочильную матрицу 3 и закрепляют на барабане 4, который приводится в движение с помощью электродвигателя 6 через привод 5. Стан включают и осуществляют процесс волочения, причем изделие также сматывается в бухту на барабане. Это обеспечивает компактность обрабатываемого материала, что очень важно при транспортировке, хранении и термообработке. Кроме этого снижаются технологические отходы, а скорость процесса увеличивается в среднем до 10 м/с (известны барабанные станы для волочения тонкой проволоки, осуществляющие процесс со скоростью до 40 м/с). Кроме однобарабанных станов, существуют многобарабанные конструкции (рис. 3.41). Их называют также станами многократного волочения. Здесь заготовка 4 последовательно проходит через несколько (до 20) волочильных матриц 5. Заготовка после прохождения через отверстия каждой матрицынаматывается на промежуточные тянущие барабаны 3, а затем на приемный барабан (на схеме не показан). Скорость вращения каждого последующего барабана возрастает пропорционально удлинению заготовки.

Технологический процесс волочения включает следующие основные операции.

1) Предварительная термическая обработка - рекристаллизационный отжиг, с целью повышения пластичности металла.

2) Очистка заготовки от окалины (металл протравливают в растворах кислот и затем последовательно промывают горячей и холодной водой).

3) Покрытие поверхности заготовки тонким слоем гидрата окиси железа или медью, фосфатом, известью для удержания смазки на поверхности металла.

4) Заострение концов заготовки для удобства протягивания ее через отверстие и захвата клещами волочильного стана.

5) Волочение в один или несколько проходов в зависимости от требуемой степени деформации.

6) Межоперационная термическая обработка для снятия наклепа (после термической обработки - очистка заготовки и нанесение подсмазочного слоя).

7) Отделка готовой продукции.

Процесс волочения имеет следующие достоинства.

1) Высокая точность геометрических размеров изделия, определяемая только размерами отверстия матрицы (допуск 0,02 мм).

2) Высокое качество поверхности соизмеримое со шлифованием при обработке резанием.

3) Высокая производительность. Скорость волочения проволоки на станах непрерывного действия достигает 10 м/с, а для тонкой проволоки – 40 … 50 м/с.

4) Повышение прочности изделия за счет наклепа при холодной обработке.

5) Малая стоимость инструмента и оборудования.

6) Возможность получения длинномерных профилей (десятки тысяч метров), которые не удается получить другими способами.

7) Малые технологические отходы металла.

Недостатки процесса.

1) Сортамент изделий, получаемых волочением, ограничен, как и размеры профилей.

2) При обработке стали требуются неоднократные отжиги и травление поверхности для удаления окалины.

КОВКА

Ковка является одним из важнейших способов получения заготовок в машиностроении. Эти заготовки называют коваными поковками, или просто поковками. Ковкой получают разнообразные по форме и размерам поковки массой от 0,1 кг до 300 тонн. При последующей обработке на металлорежущих станках из поковок получают готовые изделия. Исходными заготовками для ковки являются металлические слитки и прокат. Особенностью ковки является нагрев заготовки перед ее деформированием.

Ковка заключается в формоизменении нагретой заготовки рабочими поверхностями универсального инструмента (бойками) при свободном течении металла в стороны. Ковкой изменяют конфигурацию заготовки за счет многократного последовательного воздействия бойками на отдельные ее участки, в результате чего заготовка, деформируясь, постепенно приобретает заданную форму и размеры.

Воздействие на заготовку может быть ударным, если она обрабатывается на молоте, или статическим – при обработке на прессе.

Для выполнения операций ковки используют основной технологический, поддерживающий (вспомогательный) и контрольно-измерительный инструменты. К основному инструменту относят бойки (плоские и вырезные), топоры, раскатки, прошивни, оправки, подкладные штампы и т.п. Поддерживающий инструмент- это клещи, патроны, консольные поворотные краны, ковочные манипуляторы. Контроль размеров поковок осуществляют с помощью линеек, штангенциркулей, скоб, шаблонов и т.п. Используемые для ковки инструменты считаются универсальными по той причине, что они оказываются пригодными для изготовления различных по конфигурации поковок.

Хотя ковка и уступает горячей объемной штамповке по производительности и точности поковок, однако имеет свою рациональную область применения. Это прежде всего выпуск малых серий поковок небольшой и средней массы (100…200 кг), когда изготовление дорогостоящих штампов для горячей объемной штамповки экономически нецелесообразно. В таких случаях более экономична ковка на молотах универсальным инструментом - бойками. Крупные поковки (особенно массой десятки и сотни тонн) удается изготовлять только ковкой на гидравлических прессах. В общем выпуске поковок, производимых в нашей стране, в среднем 30% приходится на кованые поковки, а 70%- на штампованные. Однако, например, в тяжелом машиностроении число кованых поковок достигает 70%.

ОСНОВНЫЕ ОПЕРАЦИИ КОВКИ

Ковка может быть машинной на молотах и прессах и ручной. Ручная ковка применяется для изготовления художественных изделий, а также используется в ремонтном деле для мелких работ.

Процесс ковки состоит из чередования в определенной последовательности основных и вспомогательных операций.

Операция – это часть технологического процесса, которая выполняется на одном рабочем месте с использованием определенной группы инструмента и включает в себя последовательность действий над заготовкой с целью получения поковок требуемой формы и заданных свойств. Операция состоит из серии переходов. Переход – это часть операции, в процессе которой обрабатывается один участок заготовки одним и тем же инструментом на одном рабочем месте.

Таким образом, каждая операция определяется характером деформирования и применяемым инструментом. К основным операциям ковки относятся: осадка, протяжка, прошивка, отрубка, гибка, скручивание, сварка, штамповка в подкладных штампах.

Осадка — операция, заключающаяся в увеличении площади поперечного сечения заготовки при уменьшении ее высоты (рис. 3.42). Осадку производят бойками или осадочными плитами. Для получения качественной поковки рекомендуется исходную цилиндрическую заготовку выбирать с отношением ее высоты hзаг к диаметру dзаг не более 2,5, во избежание возможного продольного искривления изделия. Торцы заготовки должны быть ровными и параллельными. Разновидностью осадки является высадка, при которой металл осаживают лишь на части длины заготовки 1 за счет использования подкладного инструмента 2, в результате чего формируется местное утолщение поковки (рис. 3.43).

Протяжка — операция, заключающаяся в уменьшении площади поперечного сечения заготовки или ее части за счет удлинения заготовки. Протяжка осуществляется последовательными ударами или обжатиями отдельных, примыкающих друг к другу участков заготовки при ее подаче вдоль своей оси (рис. 3.44). Сумма определенного числа ударов или обжатий, выполняемых осуществляемых последовательно до определенной толщины заготовки, называется проходом. Два последовательных обжатия с промежуточной кантовкой (поворотом) поковки на 90° называются переходом.

Протяжку выполняют плоскими или вырезными бойками. Ковка в вырезных бойках (рис. 3.45) позволяет избежать ковочных трещин (особенно в случае протяжки осесимметричных заготовок) при ковке низко-пластичных сталей и сплавов и получить более точные размеры поковки.

Деформация при протяжке выражается величиной уковки, и характеризуется отношением площади поперечного сечения исходной заготовки FH к площади конечного поперечного сечения FK.

У= FH/ FK

Чем больше уковка, тем лучше структура металла и выше его механические свойства. Поэтому протяжку применяют не только для получения поковок требуемой формы, но и для повышения качества металла.

Существует ряд разновидностей протяжки.

Разгонка — операция увеличения ширины части заготовки за счет уменьшения ее толщины в этом месте (рис. 3.46).

Протяжка с оправкой — операция уменьшения толщины стенок заготовки с отверстием при сопутствующем увеличении длины поковки (рис. 3.47). Протяжку выполняют в вырезных бойках (или нижнем вырезном 3 и верхнем плоском 2) на слегка конической оправке 1. Для облегчения удаления оправки из поковки куют в направлении к расширяющемуся концу оправки.

Раскатка на оправке — операция уменьшения толщины стенок кольцевой заготовки при увеличении наружного и внутреннего ее диаметров (рис. 3.48). Кольцевая заготовка 1 опирается внутренней поверхностью на цилиндрическую оправку 2, устанавливаемую концами на подставках (люнетах) 3, и деформируется между оправкой и узким длинным плоским бойком 4. После каждого удара или нажатия заготовку поворачивают относительно оправки. При раскатке на оправке ширина кольца несколько увеличивается.

Прошивка — операция получения сквозных или глухих полостей в заготовке за счет вытеснения металла из зоны его контакта с инструментом (рис. 3.49). Прошивка является самостоятельной операцией, служащей для образования углублений или отверстия в поковке либо подготовительной операцией для последующей протяжки или раскатки заготовки на оправке. Инструментом для прошивки являются прошивни, сплошные и пустотелые (рис. 3.50). Отверстия диаметром до 500 мм пробивают сплошным прошивнем с применением подкладного кольца, а отверстия большего диаметра прошивают полым прошивнем. Диа метр прошивня должен быть не более 1/2—1/3 наружного диаметра заготовки. При большем диаметре прошивня форма поковки значительно искажается. В высоких поковках сначала прошивают отверстие с одной стороны (примерно на 3/4 глубины), а затем этим же прошивнем заканчивают прошивку с другой стороны, перевернув поковку на 1800. При сквозной прошивке тонких поковок 1 применяют подкладные кольца 2. Прошивка сопровождается отходом части металла 3, которую называют выдрой (рис. 3.51).

Отрубка - операция полного отделения части заготовки по незамкнутому контуру путем внедрения в заготовку деформирующего инструмента (рис. 3.52). Инструментом для рубки служат прямые и фигурные топоры и зубила (рис. 3.53). Отрубку топорами осуществляют для удаления прибыльной и донной частей слитка, излишков металла на концах поковок или для разделения длинной заготовки на более короткие части. Разновидностью отрубки является надрубка, служащая для образования в поковке уступов, заплечиков.

Гибка - операция образования или изменения углов между частями заготовки или придания заготовке изогнутой формы по заданному контуру (рис. 3.54). Гибку осуществляют с помощью различных опор, подкладок, приспособлений и в подкладных штампах. Этой операцией получают угольники, скобы, крюки, кронштейны и т. п. При выборе исходной заготовки следует учитывать искажение первоначальной формы и уменьшение площади поперечного сечения поковки в зоне изгиба, называемое утяжкой. Для компенсации утяжки в зоне изгиба заготовке придают увеличенные поперечные размеры. При гибке возможно образование складок по внутреннему контуру и трещин по наружному. Во избежание этого явления по заданному углу изгиба подбирают соответствующий радиус скругления.

Скручивание — операция, в ходе которой обеспечивается поворот одной части заготовки относительно другой на заданный угол вокруг продольной оси (рис. 3.55). Скручивание применяется при изготовлении коленчатых валов, сверл и т. п. При скручивании используют ключи, воротки, лебедки, кран-балки.

Сварка — операция образования неразъемного соединения путем совместного пластического деформирования предварительно нагретых заготовок (рис. 3.56).

Штамповка в подкладных штампах – ковочная операция, позволяющая изготавливать достаточно сложные по конфигурации поковки (рис. 3.57). Используется при изготовлении небольшой партии таких поковок, как головки гаечных ключей, головки болтов, диски со ступицей, втулки с буртом и т.п. Подкладной штамп может состоять из одной или двух частей, в которых имеется полость с конфигурацией поковки или ее отдельного участка.

При изготовлении конкретной детали операции ковки чередуются в определенной последовательности.

Примером работ, выполняемых свободной ковкой, служит ковка рычага с вилкой (рис. 3.58, а).

Заготовкой для ковки служит пруток прямоугольного сечения. Нагретую заготовку протягивают на прямоугольник требуемого размера, после чего трехгранными призмами ее надрубают (рис. 3.58, б).

 

Рис. 3.58. Последовательность ковки рычага с вилкой:

а- деталь, б- надрубка, в, г, д - протяжка и надрубка, е- гибка, ж- протяжка

Протянув концы заготовки до толщины головки, делают новые надрубки (рис. 3.58, в), и протягивают каждый конец до требуемого размера (рис. 3.58, г, д). Далее заготовку изгибают и, заложив в середину вилки вкладыш, выглаживают ее. Затем надрубают конец вилки (рис. 3.58, е) и протягивают призмой (рис. 3.58, ж). После этого придают окончательный вид концу вилки с тем, чтобы получить заданную форму поковки.

Оборудование для ковки

Операции ковки выполняют на ковочных молотах и ковочных гидравлических прессах.

Молоты — машины ударного действия, в которых деформирование металла заготовки происходит за счет кинетической энергии подвижных частей, накопленной к моменту соударения с заготовкой. Скорость движения рабочего инструмента в момент удара составляет 3 … 8 м/с, время деформирования — сотые доли секунды. Основной характеристикой молота является масса подвижных (чаще всего пáдающих) частей.

В зависимости от типа привода молоты бывают пневматическими, паровоздушными, механическими, гидравлическими, газовыми, взрывными и др.

По принципу работы молоты бывают простого и двойного действия. У молотов простого действия привод служит только для подъема ударных (падающих) частей, а их движение вниз осуществляется под действием сил тяжести. Привод молотов двойного действия служит как для подъема ударных частей, так и для их движения вниз. Кинетическая энергия падающих частей молотов двойного действия вследствие этого больше, чем молотов простого действия, при одинаковых их массах.

Из приводных молотов наибольшее применение получили пневматические. Подвижными, или в данном случае пáдающими частями являются поршень, его шток и верхний боек. В пневматическом молоте подъем и опускание поршня, к штоку которого крепится верхний боек, совершается с помощью сжатого воздуха давлением 0,2 … 0,3 МПа. Сжатый воздух поступает в рабочий цилиндр от поршневого компрессора, приводимого в движение кривошипно-ползунным механизмом от отдельного электродвигателя. Рабочий и компрессорный цилиндры расположены на одной станине. Пневматические молоты имеют массу падающих частей 50 … 1000 кг и применяются для ковки мелких поковок (до 20 кг).

Пневматические молоты нашли широкое применение в кузницах небольших заводов и мастерских на участках ручной ковки. Это объясняется их низкой стоимостью, простотой обслуживания и высокой надежностью. Достоинством пневматических молотов также является использование электрической энергии, а не пара или сжатого воздуха, применение которых дороже и сложнее (как в случае использования паровоздушных молотов).

Ковочные пневматические молоты обладают следующими характеристиками: масса ударных частей составляет 50 … 150 кг, число ударов — соответственно 225 … 95 в мин. Применяют эти молоты для получения небольших поковок (0,5 … 20 кг) из сортового проката.

Пневматический молот двойного действия (рис. 3.59) оснащен двумя цилиндрами: компрессорным 5 и рабочим 2. Поршень компрессорного цилиндра 4 получает возвратно-поступательное движение от кривошипно-ползунного механизма 6. Воздух, сжатый в компрессорном цилиндре, подается по каналам 3 в верхнюю или нижнюю часть рабочего цилиндра, перемещая соответственно вниз или вверх поршень рабочего цилиндра 1, изготовленный заодно со штоком 11. На штоке закреплен верхний боек 10. Нижний боек 9 крепится к подушке 8, установленной на шаботе 7. Масса шабота превышает массу падающих частей в 10 … 15 раз.

Внешний вид пневматического молота представлен на рис. 3.60.

Основным видом молотов для ковки являются паро-воздушные молоты двойного действия. Масса падающих частей таких молотов составляет 1000 … 8000 кг, а число ударов — соответственно 71 … 34 в мин. Данные молоты предназначены для изготовления средних по массе поковок (20 … 350 кг). Паро-воздушные молоты приводятся в действие паром, поступающим по трубопроводу от котла под давлением 0,7 … 0,9 МПа, или сжатым воздухом, который подается от компрессора под давлением до 0,7 МПа. По типу станин паро-воздушные молоты бывают одно- и двухстоечными. Двухстоечные молоты выпускаются арочного и мостового типов.

Схема паро-воздушного ковочного молота двойного действия со станиной арочного типа приведена на рис. 3.61. Внешний его вид представлен на рис. 3.62. Станина 4 является основанием, на котором смонтированы все узлы и механизмы молота. Рабочим органом молота является баба 5, к которой крепится верхний боек 6.

Последнее изменение этой страницы: 2016-08-17

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...