Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






ВАЛЬЦОВКА (ШТАМПОВКА НА КОВОЧНЫХ ВАЛЬЦАХ)

Штамповка в ковочных вальцах напоминает продольную прокатку в двухвалковой рабочей клети. На валках клети при этом закрепляют секторные штампы, имеющие ручьи соответствующего профиля (рис. 3.118). Таким образом, в ковочных вальцах деформирование заготовки 1 осуществляется во вращающихся секторных штампах 4 и 6, закрепленных на валках 3 и 7. В момент расхождения секторных штампов нагретую заготовку 1 подают до упора 2 клещами 5. При повороте валков происходит захват заготовки и обжатие ее в соответствии с профилем ручья штампов. Одновременно с обжатием заготовка выталкивается из вальцов в сторону вальцовщика. На одном секторном штампе может быть выполнено несколько ручьев рядом. При этом заготовку могут обрабатывать, передавая ее из ручья в ручей.

На вальцах изготовляют поковки сравнительно несложной конфигурации, типа звеньев цепей, рычагов. Кроме этого вальцовка служит для предварительного профилирования заготовок удлиненной формы - шатуна, гаечных ключей и т.п. перед последующей штамповкой на другом оборудовании. Достигаемое при этом перераспределение металла по длине заготовки с учетом формы и сечений поковки позволяет существенно снизить отходы металла и повысить производительность труда при штамповке.

РАСКАТКА КОЛЬЦЕВЫХ ЗАГОТОВОК

Раскатка кольцевых заготовок осуществляется в процессе деформирования ее валками на специализированных кольцераскатных машинах.

Существуют несколько различных схем раскатки. Наиболее распространенной является открытая раскатка (рис. 3.119, а). В этом случае исходная кольцевая заготовка 1 помещается между двумя валками 2 и 3, один из которых, обычно наружный, является приводным. Валок 3 при этом совершает еще возвратно-поступательное перемещение, воздействуя на заготовку с усилием, необходимым для ее деформирования. Таким образом, наружный валок, вращаясь, увлекает за собой заготовку, при этом внутренний валок также начинает вращаться за счет сил трения от контакта с заготовкой. Кольцевая заготовка в процессе деформирования увеличивается в диаметре, а толщина стенки ее уменьшается. Правильность кольцевой формы поковки обеспечивается двумя свободно вращающимися направляющими валками 4 и 5, которые прижимаются к ней с определенным усилием. При достижении заданного наружного диаметра поковка касается контрольного ролика 6, который подает сигнал на отвод нажимного валка 3 в исходное положение, после чего поковка может быть удалена с валка 2.

Формы основных сечений кольцевых заготовок, полученных на раскатных машинах, представлены на рис. 119,б.

Способ применяется при изготовлении кольцевых деталей диаметром от 50 … 70 до 7000 мм, шириной соответственно от 5 … 7 до 1200 мм и массой от нескольких десятков граммов до 12,5 т. В зависимости от поставленных задач, габаритов и материала изделий раскатку выполняют в горячем или холодном состоянии.

 

НАКАТКА ЗУБЧАТЫХ КОЛЕС

Накатка зубчатых колес и звездочек дает возможность получить изделия, не требующие дополнительной обработки резанием. Применяют ее как окончательную операцию обработки зубчатого венца при производстве зубчатых колес. Сущность процесса заключается в обкатке нагретой штучной или прутковой заготовки в зубчатых валках. Схема процесса показана на рис. 3.120. Поверхностный слой заготовки 1 нагревается током высокой частоты с помощью секторных индукторов 2. Приводной зубчатый валок 4 имеет также возможность радиального перемещения от гидравлического устройства, благодаря чему он, обкатываясь по заготовке 1, постепенно деформирует ее, образуя на поверхности зубчатый профиль. Ролик 3, свободно вращаясь на валу, обкатывает зубья по наружной поверхности.

Процесс осуществляют на полуавтоматических установках.

Изготовление зубчатых колес методом горячего накатывания повышает износостойкость и усталостную прочность зубьев на 30 … 50%. Расход металла на 18 … 40% меньше, чем при получении зубьев на зубонарезных станках, при этом производительность полуавтомата для накатки колес выше производительности зубонарезного оборудования.

ХОЛОДНАЯ ТОРЦЕВАЯ РАСКАТКА

Холодная торцевая раскатка относится к области холодного объемного деформирования, является при этом значительным резервом расширения ее технологических возможностей.

На рис. 3.121,а представлена одна из схем раскатки, а на рис. 3.121,б примеры типовых деталей, изготовленных раскаткой. Торцовая раскатка заготовок выполняется цилиндрическими или коническими валками различной конфигурации. Заготовкой здесь является пруток или труба. Сущность процесса заключается в том, что свободно вращающийся валок 1 за каждый оборот заготовки 2, установленной на оправке 3 в матрице 4, осуществляет обжатие торца с уменьшением его размеров в пределах 0,2 … 1 мм. Формообразование детали происходит за 10 … 30 оборотов, при этом течение металла обычно ограничивается контуром матрицы, соответствующим конфигурации детали.

При холодной торцевой раскатке за счет локального приложения нагрузки значительно снижается общее усилие деформирования и контактные напряжения, действующие на инструмент. На оборудовании относительно небольшой мощности можно с высокой точностью изготавливать крупногабаритные детали, в том числе из труднодеформируемых материалов, при экономном расходовании металла и оптимальном расположении его волокон, что повышает эксплуатационные свойства получаемых деталей. Стоимость оснастки относительно невысока. Возможность автоматизации и быстрой переналадки ротационной обработки позволяют на основе этих технологий создавать гибкие автоматизированные участки.

РОТАЦИОННАЯ ВЫТЯЖКА

Ротационная вытяжка является одним из старейших процессов обработки металлов. – Она служит для получения полых осесимметричных изделий различных форм.

При ротационной вытяжке изделие оформляется по оправке, причем форма изделия копирует форму оправки, как показано на рис. 3.122. Заготовка 2 прижимается к оправке 3 прижимной бабкой 4 и вращается вместе с ними. Давильный ролик 1 движется от центра заготовки к периферии, формоизменяя заготовку на некоторый угол. Затем ролик 1 движется в обратном направлении. Заготовка постепенно приближается к форме оправки 3 и обжимается на ней. При вытяжке длинных деталей применяют поддерживающие ролики 5.

МАГНИТНО-ИМПУЛЬСНАЯ ШТАМПОВКА

Магнитно-импульсная штамповка осуществляется только одним инструментом - пуансоном или матрицей. Функции второго инструмента выполняет магнитное поле, что позволяет изготовлять детали сложных форм.

Установка для электромагнитной штамповки имеет источник энергии, состоящий из высоковольтного зарядно-выпрямительного устройства, батареи конденсаторов и коммутирующего устройства. Основным элементом установки является катушка индуктивности (индуктор). При разряде электрической энергии, предварительно накопленной в батарее конденсаторов установки, на индукторе вокруг его токопроводных элементов образуется мощный импульс переменного магнитного поля. Применение импульсного магнитного поля для штамповки основано на использовании сил электромеханического взаимодействия между вихревыми токами, наведенными в стенке обрабатываемой детали при пересечении их силовыми линиями магнитного поля, и самим импульсным полем, в результате чего возникают импульсные механические силы, деформирующие заготовку.

На пути перемещения заготовки установлен технологический инструмент (матрица, пуансон), с помощью которого заготовке придается необходимая форма. В зависимости от используемого инструмента и схемы установки заготовки относительно инструмента и индуктора технологические операции магнитно-импульсной штамповки осуществляют, в основном, по двум схемам: обжим и раздача. На рис. 3.123 дана схема взаимного расположения обмотки индуктора 3, инструмента 2 и заготовки 1 при обжиме.

Магнитно-импульсной штамповкой можно получать не только трубчатые, но и плоские изделия, а также выполнять сборочные операции путем пластического деформирования одной детали по контуру другой: соединение концов труб, запрессовку в трубах колец и фланцев, соединение втулки со стержнем и т.д.

Процесс характеризуется высокой производительностью. Кратковременность приложения нагрузки и высокие скорости деформирования обеспечивают возможность изготовления инструмента из конструкционных сталей и пластмасс, благодаря чему стоимость инструмента снижается более чем в 2 раза.

ШТАМПОВКА ВЗРЫВОМ

Для штамповки взрывом характерны высокие давления (около 3000 МПа), прилагаемые к заготовке в течение тысячных долей секунды, что разгоняет заготовку до скоростей до 150 м/с. Штамповка взрывом применяется для вытяжки, отбортовки, раздачи и обжима труб, формовки ребер жесткости, калибровки, правки, вырубки и других операций.

Схема показана на рис. 3.124. Заготовку 3 укладывают на матрицу 2 и прижимают к ней прижимом 4. Из полости матрицы под заготовкой откачивается воздух. Над заготовкой помещают заряд 5 взрывчатых веществ с детонатором, бассейн 1 заливают водой 6. При взрыве заряда образуется ударная волна высокого давления, которая через слой воды передается на поверхность заготовки. Часть энергии ударной волны расходуется на придание заготовке ускорения, часть на пластическую деформацию.

Последнее изменение этой страницы: 2016-08-17

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...