Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Основы теории и технологии прокатки

Скорость деформации

Скорость деформации в ОМД определяется относительным изменением размеров тела в единицу времени.

При осадке параллелепипеда (Рисунок 13) скорость деформации определится:

, (21)

 

где − текущее уменьшение высоты;

− высота параллелепипеда;

− относительная деформация.

Рисунок 13- Схема к расчету скорости деформации.

Выражение является, ни что иное как, линейная скорость деформации, то есть скорость продвижения инструмента в направлении деформации:

. (22)

 

Подставляя полученное выражение в формулу определения скорости деформации, получим:

. (23)

 

При прокатке (Рисунок 14) средняя степень деформации:

Рисунок 14 - Схема к определению скорости деформации.

Время прокатки равно длине очага деформации поделенной на окружную скорость валков: , тогда

. (24)

 

На основании многочисленных исследований можно считать, что при горячей обработке влияние скорости деформации на пластичность металлов определяется совокупным действием двух факторов. С одной стороны, с ростом скорости деформации пластичность понижается, поскольку увеличивается интенсивность упрочнения. С другой стороны, при увеличении скорости деформации возрастает нагрев. Значительная часть энергии деформации превращается в теплоту, что повышает температуру обрабатываемого тела. Это стимулирует разупрочнение и, следовательно, увеличение пластичности.

В условиях холодной обработки малые скорости деформации слабо проявляют свое влияние на пластичность металлов. Высокие скорости способствуют нагреву деформируемого тела, что приводит к разупрочнению и увеличению пластичности, что можно учитывать скоростным коэффициентом .

Внешнее трение

Трение может быть полезным и вредным - эту аксиому человек освоил еще на заре цивилизации. Ведь два самых главных изобретения - колесо и добывание огня - связаны именно со стремлением уменьшить и увеличить эффекты трения. Однако понимание природы трения и законов, которым подчиняется это явление, возникло не так уж давно и, к сожалению или к счастью, еще далеко от совершенства.

Первым, кто описал закон трения, был Леонардо Да Винчи, годы жизни 1452-1519, утверждал, что сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна нагрузке, силе прижатия, направлена против направления движения и не зависит от площади контакта. Модель Леонардо была переоткрыта через 180 лет Г. Амонтоном и получила окончательную формулировку в работах Ш.О. Кулона (1781). Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке, придав ему значение физической константы, полностью определяющей силу трения для любой пары контактирующих материалов:

, (25)

 

где − сила трения;

− нормальное усилие, сила прижатия;

− коэффициент трения.

Значения коэффициента трения для различных материалов (сталь по стали, сталь по бронзе, чугун по коже и т.д.) входят в стандартные инженерные справочники и служат базой для традиционных технических расчетов.

В ОМД смещенный объем стремится переместиться по поверхности инструмента. При этом возникают силы трения, препятствующие этому движению. Такое трение называется контактным или внешним.

Контактное трение, в ОМД, выполняет две функции:

- полезная – без контактного трения невозможна прокатка;

- вредная – препятствие свободному заполнению металлом рабочего пространства инструмента.

Переходя к элементарной площадке контакта закон Амонтона можно записать:

, (26)

где − удельная сила трения;

− нормальное удельное давление.

Если тело находится в условиях пластической обработки, то удельное усилие в тонких слоях деформируемого тела и на поверхности инструмента ограничено пределом текучести при сдвиге отсюда .

Отсюда видно, что максимальное удельное усилие трения определяется не состоянием контактируемых поверхностей, а механическими свойствами обрабатываемого металла. Скольжение с предельным трением происходит как на поверхности касания, так и в поверхностном деформируемом слое, толщина которого определяется состоянием контактирующих поверхностей.

Кроме коэффициента трения в ОМД применяют понятие угол трения . При движении контактируемых тел, Рисунок 15, суммарная реакция нормального усиления и силы трения смещается на угол от вертикали (нормали).

Рисунок 15- Схема определенного угла трения.

Тогда и при малых углах

Природу трения можно объяснить как результат взаимного зацепления неровностей инструмента и деформируемого тела. При контактировании эти неровности сминаются, истираются, образуются новые поверхности. Эти поверхности сближаются, образуются условия молекулярного взаимодействия соприкасающихся металлов.

Параметрами, определяющими коэффициент трения являются: состояние поверхностей контактируемых тел, их количественный состав, температура и скорость деформации, удельные усилия, смазка.

При увеличении шероховатостей инструмента коэффициент трения увеличивается. Шероховатость при ОМД не остается постоянной, поэтому изменяется и коэффициент трения.

Состояние поверхности деформируемого тела, определяется видом предварительной обработки (горячая или холодная деформация, наличие окалины, травление) существенно влияет на коэффициент трения. При тщательной очистке поверхности коэффициент трения падает и в условиях больших давлений возможно даже сваривание поверхностей.

Химическое сродство деформируемого тела и металла инструмента определяет величину коэффициента трения. При этом, чем мягче металл, тем выше коэффициент трения. Смазка контактных поверхностей уменьшает коэффициент трения и влечет за собой заметное падение энергосиловых параметров ОМД, снижает износ инструментов. Смазка заполняет шероховатости поверхностей, образует адсорбционную пленку, снижает прилипание.

По мере роста температуры металла коэффициент трения увеличивается. Это связано с облегчением заполнения шероховатостей рабочего инструмента деформируемым металлом. Однако для сталей при температуре выше происходит снижение коэффициента трения.

Рисунок 16 - Зависимость коэффициента трения от .

Это объясняется увеличением податливости металла в приконтактной зоне, облегчением смятия и отрыва металла от выступов.

Скорость относительного смещения инструмента и деформируемого тела оказывает существенное влияние на коэффициент трения. Чем выше скорость, тем меньше коэффициент трения.

Захват металла валками

Непрерывное втягивание металла валками, его деформация обеспечивается наличием контактного трения между полосой и валками. Геометрическую область деформирования при прокатке (Рисунок 17) принято называть очагом деформации. Дугу называют дугой захвата, а отвечающий ей угол − углом захвата.

Тело, деформируемое прокаткой, независимо от размеров его поперечного сечения и формы называется полосой.

Рисунок 17 - Схема прокатки в цилиндрических валках.

Весь процесс прокатки полосы, с момента захвата и до момента выхода полосы из валков, из-за различных условий деформирования делится на 3 периода:

1. Захват полосы валками – заполнение очага деформации до момента образования некоторого переднего конца за пределами линии центров валков.

2. Установившейся период – характеризующийся постоянством условий деформации при наличии заднего конца.

3. Заключительный – период ухода металла из очага деформации.

В дальнейшем считаем, что оба валка цилиндрические, одного диаметра, вращаются с одной скоростью, имеют одинаковые условия трения, упругая деформация их не учитывается.

Увеличение обжатия зависит от увеличения угла захвата. Из рисунка 12 видно, что:

. (27)

 

Тогда , если ,то D.

Кроме угла захвата на увеличение обжатия оказывает влияние диаметр валков: чем больше диаметр - тем больше обжатие при равных условиях трения.

Практикой установлено максимальные углы захвата и коэффициенты трения при прокатке различных металлов (таблица 1):

При прокатке стали можно пользоваться формулами по определению коэффициента трения:

− для стальных валков,

− для чугунных,

где t – температура проката.

 

Таблица 1 - Коэффициенты трения и углы захвата

  Коэффициент трения угол захвата
Горячая прокатка
блюмов 0.45 ¸ 0.62 24 ¸ 32
стальных профилей 0.36 ¸ 0.47 20 ¸ 25
стальных листов 0.27 ¸ 0.36 15 ¸ 20
Холодная прокатка
со смазкой 0.04 ¸ 0.09 3 ¸ 5
без смазки 0.09 ¸ 0.18 5 ¸ 10

При соприкосновении полосы с вращающимися валками полоса оказывает радиальное давление на валки. В результате образуется сила трения T, которая стремится подать полосу в область деформирования, Рисунок 18. Чтобы определить захватывающую способность валков, необходимо сопоставить действие сил Tи R. Захват полосы возможен, если проекция силы на направление движения больше, чем проекция силы R:

.

Разделим левую и правую часть неравенства на ,

Тогда .

Из условия Амонтона , тогда

Так как ,

где − угол трения.

Это означает, что для захвата металла валками необходимо, чтобы угол захвата был меньшем, чем угол трения, то есть .

Равенство углов и отвечает крайним условиям. При захват металла невозможен.

Рисунок 18 - Схема силового взаимодействия полосы и валков в первый период.

По мере заполнения очага деформации, появления переднего конца полосы и перехода к установившемуся процессу, положение равнодействующей смещается ближе к плоскости выхода (Рисунок 19). Если принять, что контактные напряжения по дуге захвата равномерные, то реакция полного усиления металла на валки будет делить область деформирования пополам:

. (28)

 

Так же, как и в момент захвата, прокатка может выполняться, если:

, , то

, (29)

 

Рисунок 19 - Схема силового взаимодействия полосы и валков в установившийся период

По данным ряда исследований установлено, что коэффициент контактного трения при установившемся процессе на меньше, чем при захвате:

. (30)

Однако, сравнивая предельные условия при установившемся процессе и в момент захвата, можно отметить, что установившейся процесс имеет большие резервы по трению:

, (31)

где .

Поэтому определяющим для прокатки, по условиям трения, является условия захвата, т.е. .

Для повышения обжатий с целью использования резервных сил трения, присущих установившемуся процессу прокатки, можно использовать принудительную задачу заготовки в валки (прикладывая какую - то силу к заднему концу полосы) или использовать специальную технологию поджатия заготовки прокатным валком.

Кинематика процесса прокатки

Появление избытка сил трения и их рост по мере перехода от начального момента захвата металла к установившемуся процессу влечет за собой появления опережения - когда скорость выхода металла из валков превышает скорость самих валков в направлении движения полосы. Наличие опережения при прокатке вытекает из условия равновесия в условиях статического положения или равномерного прямолинейного движения: сумма проекций всех сил на ось равна нулю. Если имеется избыток сил трения в установившемся процессе, то должна появиться какая-то сила, компенсирующая этот избыток. Это обеспечивается возникающим проскальжеванием полосы на некотором участке поверхности валков вблизи выхода вследствие опережения. В зоне опережения силы трения направлены со стороны валков против перемещения металла.

Опережение обычно выражается в процентах:

(32)

где − окружная скорость валков;

− скорость переднего конца полосы.

Обычно опережение равно .

Наряду с увеличением скорости переднего конца полосы по отношению к скорости валков имеет место и уменьшение скорости заднего конца. Данное явление называется отставанием. Отставание также выражается в процентах:

(33)

где − скорость полосы в плоскости входа;

− угол захвата.

Используя закон постоянства объема можно получить связь между опережение и отставанием:

. (34)

Точное знание скорости полосы при входе и выходе, из валков, важно при определении частоты вращения валков в связи с режимом обжатий в непрерывных станах, в которых полоса одновременно прокатывается в нескольких валках.

Ввиду наличия скоростей металла в очаге деформации как меньших окружной скорости валков, так и больших, обязательно имеется сечение, в котором скорость металла равна скорости валков. Такое сечение называется критическим сечением, а центральный угол, отвечающий этому сечению, называется критическим углом.

Перемещаясь по поверхности валков частицы металла, как и силы трения, меняют направление своего движения.

Помимо непрерывного проскальзывания металла по контактной поверхности валков, в очаге деформации может присутствовать участок, где проскальзывание отсутствует. Такой участок называется зоной прилипания.

Для расчетов скоростей входа и выхода металла из валков необходимо знать зависимость опережения от технологических факторов:

Следует обратить внимание, что природа опережения зависит не только от сил трения, но и от закона наименьшего сопротивления − перемещение частиц в направлении наименьшего сопротивления, т.е. в направлении кратчайшей нормали к контуру контактной поверхности. Поэтому на опережение, помимо трения, влияют диаметр валков, толщина деформируемой полосы, поперечная деформация, натяжение полосы.

Поперечная деформация

При прокатке смещенный объем по высоте деформируемого тела увеличивает преимущественно длину полосы. Наряду с этим имеет место и увеличение ее ширины. Это явление называется уширением:

. (35)

Более полно поперечную деформацию характеризует относительное уширение: .

Установлено, что на величину и характер развития уширения при прокатке влияет множество факторов: обжатие , распределение обжатий по проходам, относительное обжатие , форма очага деформации, т.е. отношение между длиной очага деформации и средней высотой полосы, диаметр валков, коэффициент трения, переднее и заднее натяжение и др.

По данным ряда исследований, вполне удовлетворительные результаты дает формула В. П. Бахтинова для расчета уширения при прокатке:

. (36)

Из формулы видно, что чем выше обжатие, тем больше уширение.

Вместе с тем, на уширение оказывает заметное влияние и дробность деформации. Суммарное уширение за несколько проходов в условиях одинаковой общей высотной деформации получается при меньшем числе проходов, или в один проход.

Чем выше диаметр валков при одном и том же обжатии и высоте полосы − тем больше уширение. Изменение трения на конкретной поверхности ведет к изменению напряжений в продольном и поперечном направлениях.

Прокатные изделия.

Металлургическая промышленность выпускает разнообразные виды проката, отличающиеся по форме поперечного сечения и размером. Все эти изделия, перечень которых называется сортаментом, как правило, стандартизированы.

Весь сортамент можно разбить на 4 группы:

- сортовой;

- листовой;

- трубы;

- специальные виды проката.

Наиболее разнообразной группой является сортовой прокат, который разделяется на профили:

- простые (круг, квадрат);

- фасонные профили (уголок, швеллер, шестигранник и т.д.);

- специального назначения (рельсы, профили судостроения, сельхозмашиностроения, электропромышленности и т.д.).

Кроме того, сортовой прокат подразделяется на крупносортный, среднесортный, мелкосортный и катанку (5,5÷9 мм в диаметре).

В зависимости от способа производства листовой прокат подразделяется на 3 основные группы:

- горячекатанные листы толстые (> 4мм.);

- горячекатанные листы тонкие (< 4мм.);

- холоднокатанные листы (0.02 ¸ 4мм.).

Трубы, изготавливаемые на прокатных станах бывают:

- бесшовные;

- сварные (со швом).

Помимо круглых труб производят трубы прямоугольные, с переменными размерами в сечении.

Последнее изменение этой страницы: 2017-07-16

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...