![]() Категории: ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника |
Мощность тока. закон джоуля-ленцаРассмотрим произвольный участок цепи постоянного тока, к концам которого приложено напряжение U. За время t через каждое сечение проводника проходит заряд q=I*t . Это равносильно тому, что заряд q переносится за время t из одного конца проводника в другой. При этом силы электростатического поля и сторонние силы, действующие на данном участке, совершают работу A=q*U=I*U*t. Разделив работу на время t, за которое она совершается, получим мощность, развиваемую током на рассматриваемом участке .P=I*U Эта мощность может расходоваться на совершение работы над внешними телами; на протекание химических реакций; на нагревание данного участка цепи и др. В случае, когда проводник неподвижен и химических превращений в нем не совершается, работа тока затрачивается на увеличение внутренней энергии проводника, в результате чего проводник нагревается. Принято говорить, что при протекании тока в проводнике выделяется тепло Q=I*U*t=I2*R*t Это соотношение называется законом Джоуля - Ленца. Оно было экспериментально установлено английским физиком Д. П. Джоулем и подтверждено точными опытами Э. Х. Ленца. Если сила тока изменяется со временем, то количество теплоты, выделяющееся в проводнике за время t, вычисляется по формуле От формулы (4.1), можно перейти к выражению, характеризующему выделение тепла в различных точках проводника. Выделим в проводнике элементарный объем в виде цилиндра. Согласно закону Джоуля - Ленца, за время dt, в этом объеме выделится количество теплоты где - dV элементарный объем. Разделив это выражение на dV и dt, найдем количество теплоты, выделяющееся в единице объема в единицу времени: Величину называют удельной тепловой мощностью тока. Эта формула представляет собой дифференциальную форму закона Джоуля - Ленца.
ВОПРОС №32 Электрический ток в металлах Электроны, перескакивая от одного атома к другому, движутся в том направлении, куда им указывает электрическое поле. Это движение и называется электрическим током в металлах. Мы знаем, что электрический ток – это направленное, упорядоченное движение заряженных частиц. В металлах в роли движущихся заряженных частиц выступают электроны. В других веществах это могут быть ионы или ионы и электроны. Движение заряженных частиц (в металлах – электронов) происходит очень медленно (доли миллиметров в секунду). Возникает вопрос: почему же, когда мы нажимаем на выключатель, лампочка загорается практически мгновенно? Дело в том, что внутри проводников с огромной скоростью (со скоростью света – приблизительно 300 000 километров в секунду) распространяется электрическое поле. При замыкании цепи поле распространяется практически мгновенно. А уже вслед за полем начинают медленно двигаться электроны, причём сразу по всей цепи. Эту ситуацию можно сравнить с движением воды в водопроводе. Воду заставляет двигаться давление в трубах, которое при открытии крана распространяется практически мгновенно, заставляя «ближайшую» к крану воду выливаться. При этом по трубам движется вся вода под этим самым давлением. Получается, что давление – это аналог электрического поля, а вода – аналог электронов. Как только прекращается действие электрического поля, сразу прекращается упорядоченное движение электрических зарядов.
ВОПРОС№33 Ток в Жидкостях Жидкости, как и любые другие вещества, могут быть проводниками, полупроводниками и диэлектриками. Например, дистиллированная вода будет являться диэлектриком, а растворы и расплавы электролитов будут являться проводниками. Полупроводниками будут являться, например, расплавленный селен или расплавы сульфидов. Ионная проводимость Электролитическая диссоциация - это процесс распадения молекул электролитов на ионы под действием электрического поля полярных молекул воды. Степенью диссоциации называется доля молекул распавшихся на ионы в растворенном веществе. Степень диссоциации будет зависеть от различных факторов: температура, концентрация раствора, свойства растворителя. При увеличении температуры, степень диссоциации тоже будет увеличиваться. После того как молекулы разделились на ионы, они движутся хаотично. При этом два иона разных знаков могут рекомбинироваться, то есть снова объединиться в нейтральные молекулы. При отсутствии внешних изменений в растворе должно установиться динамическое равновесие. При нем число молекул которое распалось на ионы за единицу времени, будет равняться числу молекул, которые снова объединятся. Носителями зарядов в водных растворах и расплавах электролитов будут являться ионы. Если сосуд с раствором или расплавом включить в цепь, то положительно заряженные ионы начнут двигаться к катоду, а отрицательные – к аноду. В результате этого движения возникнет электрический ток. Данный вид проводимости называют ионной проводимостью. Помимо ионной проводимости в жидкостях может обладать и электронной проводимостью. Такой тип проводимости свойственен, например, жидким металлам. Как отмечалось выше, при ионной проводимости прохождение тока связано с переносом вещества. Электролиз Вещества которые входят в состав электролитов, будут оседать на электродах. Этот процесс называется в электролизом. Электролиз – процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями. Электролиз нашел широкое применение в физике и технике. С помощью электролиза поверхность одного металла покрывают тонким слоем другого металла. Например, хромирование и никелирование. С помощью электролиза можно получить копию с рельефной поверхности. Для этого необходимо, чтобы слой металла, который осядет на поверхности электрода, легко можно было снять. Для этого иногда на поверхность наносят графит. Процесс получения таких легко отслаиваемых покрытий получил название гальвано-пластика. Этим метод разработал русский ученый Борис Якоби при изготовлении полых фигур для Исаакиевского собора с Санкт-Петербурге. Еще одним способом применения электролиза является получение чистого металла из примесей. С помощью электролиза изготавливают печатные платы для различных цифровых устройств. ВОПРОС №34 Ионизация газа Электрический ток в газах, как и ток в любой другой среде, требует наличия свободных электрических зарядов. В нормальном состоянии газа таких зарядов там нет, поэтому их необходимо создать искусственно. Существует два способа это сделать. Первый – это расщепить нейтральные атомы газа на электроны и положительные ионы. Второй – привнести в газ эти свободные носители извне. Как правило, применяется способ ионизации. Определение. Ионизация – процесс расщепления нейтральных молекул на ионы и электроны. Для протекания процесса ионизации необходимо каким-либо способом придать частицам дополнительную энергию, чтобы они смогли разорвать внутримолекулярные связи. Для этого используется либо некоторое излучение (например световое), либо нагревание. После ионизации газа, если приложить некоторую разность потенциалов, разноименно заряженные частицы начнут движение в противоположных направлениях, что будет означать протекание тока. Процесс ионизации происходит сложным образом: в результате него образуются как положительные ионы, так и отрицательные ионы, так и свободные электроны. Проводимость газов – ионная. Газовый разряд Протекание тока в газах – скоротечное движение большого количества ионов между электродами. Такое протекание тока называется газовым разрядом. В случае, если такой ток будет слишком мал и его можно засечь только очень точными приборами, такой разряд называется тихим. Электрические разряды в газе можно разделить на два вида: самостоятельные и несамостоятельные. Несамостоятельные разряды – разряды, которые происходят только при наличии внешнего ионизатора и прекращаются при его устранении. Самостоятельные разряды – разряды, происходящие и при отсутствии ионизаторов. Примером самостоятельного разряда является шаровая молния (рис. 1). Рис. 1. Шаровая молния (Источник) Применение газового разряда Самым распространенным применением газового разряда в технике является электрическая дуга, которая используется для электросварки и освещения (рис. 6). Рис. 6. Электрическая дуга Впервые электрическая дуга была получена в 1802 году русским физиком Петровым, а первое освещение улиц с помощью дуговых ламп было предложено и спроектировано русским инженером Яблочковым (рис. 7).
ВОПРОС №59 12 |
|
Последнее изменение этой страницы: 2016-06-10 lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда... |