Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Нові способи виробництва й обробки сталі

Електроннопроменева плавка металів. Для одержання особливо чистих металів і сплавів використовують електроннолучевую плавку. Плавка заснована на використанні кінетичної енергії вільних електронів, що одержали прискорення в електричному полі високої напруги. На метал направляється потік електронів, у результаті чого він нагрівається і плавиться. Електроннопроменева плавка має ряд переваг: електронні промені дозволяють одержати високу щільність енергії нагрівання, регулювати швидкість плавки у великих межах, виключити забруднення розплаву матеріалом тигля і застосовувати шихту в будь– якому виді. Перегрів розплавленого металу в сполученні з малими швидкостями плавки і глибоким вакуумом створюють ефективні умови для очищення металу від різних домішок.

Електрошлаковий переплав. Дуже перспективним способом одержання високоякісного металу є електрошлаковий переплав. Краплі металу, що утворяться при переплаву заготівлі, проходять через шар рідкого металу і рафинируются. При обробці металу шлаком і спрямованої кристалізації злитка знизу нагору зміст сірки в заготівлі знижується на 30 – 50%, а зміст неметалічних включень – у два– три разів.

Вакуумування сталі. Для одержання високоякісної сталі, широко застосовується вакуумна плавка. У злитку містяться гази і деяка кількість неметалічних включень. Їх можна значно зменшити, якщо скористатися вакуумированием сталі при її виплавці і розливанні. При цьому способі рідкий метал піддається витримці в закритій камері, з якої видаляють повітря й інші гази.

Рафінування сталі в ковші рідкими синтетичними шлаками. Сутність цього методу полягає в тому, що очищення сталі від сірки, кисню і неметалічних включень виробляються при інтенсивному перемішуванні сталі в ковші з попередньо злитим у нього шлаком, приготовленому в спеціальної шлакоплавильної печі. Сталь після обробки рідкими шлаками володіє високими механічними властивостями. За рахунок скорочення періоду рафінування в дугових печах, продуктивність яких може бути збільшена на 10 – 15%. Мартенівська піч, оброблена синтетичними шлаками, по якості близька до якості сталі, виплавлюваної в електричних печах [1].

 

2.3. Заходи боротьби з негативним впливом сталеплавильного виробництва на довкілля
У сталеплавильному виробництві утворюється багато стічних вод з великим забрудненням. Вони утворюються в процесі очищення газів мартенівських печей, конверторів, при охолодженні та гідроочистці виливниць, пристроїв безперервного розливання сталі та обмивки котлів– утилізаторів. Стічні води містять багато твердих часток.

У стічних водах мартенівського виробництва, які надходять з системи газоочистки мартенівських печей, міститься до 80% часток пилу розміром від 0,1 до 0,7 мм та до 20% розміром від 0,07 до 0,6 мм. Середня концентрація завислих твердих часток в стічних водах складає 3 г/л. На 93 % вони складаються з оксидів, заліза. На 1 т виплавленої сталі припадає 1,6…4,2 м3 води. Для очищення стічних вод застосовують радіальні відстійники із застосуванням коагулянтів і флокулянтів, а також магнітної сепарації.

У стічній воді конверторного виробництва міститься до 7 г/л завислих часток. Розміри часток: 0,1…0,04 мм становлять 30 % (від загальної кількості) і 0,05…0,01 мм – 70%. Для очищення цих вод також застосовують радіальні відстійники з попередньою обробкою стоків коагулянтами і флокулянтами, а також гідроциклони.

Провідна роль в охороні водних ресурсів на металургійних заводах належить замкненим системам зворотного водопостачання, так, при конверторному способі вироблення сталі існують три окремих схеми зворотного водопостачання: для газоочисних пристроїв конверторів; для зон вторинного охолодження машин безперервного лиття заготовок (МНЛЗ) та для споживачів чистої води конверторного відділення та МНЛЗ, в складі зворотних систем входять: відстійники циклони, циркуляційні насосні станції, градірні і фільтри.

В сталеплавильному виробництві щорічно утворюються більше 25 млн.т шлаків, що містять залізо (до 24% у вигляді оксидів та 20% в металевій формі); оксиди марганцю (до 11%) і оксиди кальцію, кремнію, алюмінію, магнію, хрому, фосфору; сульфіди заліза та марганцю. Половина маси шлаків йде на виготовлення різної продукції будіндустрії; 30% використовується як зворотній матеріал для використання в якості флюсів; 20% – перероблюються в добрива для сільського господарства; невелика кількість шлаків йде на виготовлення теплоізоляційних матеріалів та на грануляцію.

Шкідливий вплив підприємств сталеплавильного виробництва на довкілля можна суттєво зменшити використанням різних технологічних прийомів та пристроїв. Велике значення має механізація ручних операцій. Для зменшення шкідливих викидів передбачається: механізоване завантаження шихти; підвісні бункери для сипких матеріалів та феросплавів; автоматизовані системи для завантаження цих матеріалів; обладнання для механізації робіт по обслуговуванню конверторів та міксерних пристроїв; механізація прибирання шлаків під конверторами та сміття на робочих майданчиках; обладнання ковшів шиберними затворами.

При завантаженні шихти в мартенівську піч та її нагріванні, спостерігається винос дрібних часток руди, вапняку та шлаку. Винос цих часток припиняється після покриття шихти шаром шлаку.

Під час плавлення запиленість конверторних газів вища ніж при завантаженні шихти але залежить від періоду плавки – найбільший винос пилу припадає на період продувки киснем. Тому не слід завантажувати у піч сипучі матеріали та додавати руду у ванну на стадії кипіння.

Щоб зменшити шкідливі викиди при розливанні сталі під шлаком, необхідно забезпечити: зниження інтенсивності фтористих виділень шляхом зменшення вмісту фтористих компонентів в шихті; використання алюмомагнію замість алюмінію; марганцевої руди замість натрієвої селітри; зниження вологості домішок.

Велике значення має перехід із холодної води на киплячу в системах охолоджування сталеплавильних агрегатів. При цьому йде випаровування води, на яке витрачається значно більше тепла, ніж на нагрів, що дозволяє зменшити витрати води в 60 разів [4].

Виробництво кольорових металів


Кольорові метали – це алюміній, мідь, цинк, свинець, титан, ряд благородних металів (золото, срібло, платина) та інші. Їх використовують в машинах і приладобудуванні, радіоелектроніці, ядерній енергетиці, космічній і обчислюваній техніці та в інших галузях народного господарства.

Основною сировиною для одержання кольорових металів є руди. Водночас для виробництва багатьох кольорових металів широко використовують вторинну сировину, до якої відносять відходи металообробної промисловості, браковані деталі і ті що відпрацювали свій термін, різноманітний металевий брухт, побутовий утиль та інші матеріали, що містять кольоровий метал. Роль вторинної сировини щорічно зростає.

Крім руд, концентратів і вторинної сировини, у кольоровій металургії застосовують також інші корисні копалини, найважливішими з який є паливо і флюси. В якості палива тут може використовуватись природний газ, вугілля, вугільний пил, кокс, дизельне паливо, мазут. При спалюванні одночасно з виконанням своїх основних функцій – підігріву матеріалу, що підлягає плавленню, в ході технологічних процесів паливо виконує роль відновлювача.

Флюси в кольоровій металургії виконують ту ж саму роль, що і в чорній металургії, – корегування складу шлаків, які утворюються в процесі плавлення. В якості флюсуючих добавок широко застосовують кварцити і вапняк, а іноді залізну руду, соду, фторіди та інші сполуки.

Одержання кольорових металів з будь– якої сировини – дуже важкий процес. Він ускладнюється ще й тим, що в кольоровій металургії переробляють, як правило, порівняно бідну і складну за вмістом поліметалеву сировину. При її переробці металургійними засобами необхідно одночасно з одержанням основного металу забезпечити виділення всіх інших цінних компонентів у самостійні товарні продукти при високому ступені їхнього вилучення. Для цього застосовується цикл металургійних агрегатів. Для всіх підприємств кольорової металургії характерні багатоступеневі технологічні схеми.

Розрізняють чорнові та рафіновані метали. Чорновими називають метали, що містять у своєму складі шкідливі домішки, які погіршують споживчі якості певного металу, а також домішки цінних елементів – супутників. Чорнові метали підлягають очищенню від домішок – рафінуванню.

Шлаки є вторинним продуктом металургійних процесів. Вони утворюються внаслідок ошлакування оксидів пустої породи і флюсів. В їх складі може також знаходитись деяка кількість корисних металів. Тому шлаки попередніх років утворення, які розміщені у відвалах, можуть бути сировиною в послідуючі роки при наявності відповідної технології їх переробки. Крім того, з шлаків можна вилучати залізо, виготовляти цемент, ситали та інші матеріали для різних галузей народного господарства. Вихід шлаків при плавці руд або концентратів кольорових металів дуже великий і складає понад 60 % від маси рудної частини шихти [5].

Штейни є проміжним продуктом поліметалургійної переробки мідних, нікелевих і частково свинцевих руд і концентратів. Вони являють собою сплав сульфідів важких кольорових металів із сульфідами заліза, в якому розчинені домішки. Штейни утворюються у рідкому стані і практично не змішуються з рідкими шлаками, що дозволяє розділити їх простим відстоюванням

Газ і пил, що утворюються у металургійному процесі, цілком визначаються типом перероблюваної сировини і особливостями самого процесу. Вихідні гази поділяються на топкові, які є продуктом спалювання палива, та технологічні, що утворюються завдяки хімічним реакціям між компонентами перероблюваної сировини. Основними компонентами газів кольорової металургії є: сірчаний ангідрид, діоксид і оксид вуглецю та пари води. Крім того в газах обов’язково присутній азот, вільний кисень, хлор, сполуки миш’яку та інші. Температура вихідних газів дорівнює 800 … 1300оС.

Пил, який утворюється внаслідок технологічного процесу, умовно ділять на грубий (3.. 3000 мкм) і тонкий з розмірами часток менше 0,1 мкм. Грубий пил за хімічним складом ідентичний складу вихідного матеріалу, з якого він утворився. Звичайно, грубий пил повертають в обіг або об’єднують із продуктами даного процесу. Тонкий пил утворюється переважно завдяки сублімації легко летких компонентів. Тонкий пил в кольоровій металургії називають «перегоном».За своїм хімічним складом тонкий пил різко відрізняється від вихідного матеріалу – він збагачений леткими компонентами, такими як свинець, кадмій, цинк, індій, германій. Перегони є цінною сировиною для вилучення з них вищеназваних елементів, а тому вони обов’язково повинні піддаватися паралельній переробці за своєю технологією.

Кольорова металургія України не дуже поширена через обмеженість різновидів руд та їх запасів. Сировинна база кольорової металургії України подана запасами алюмінієвої сировини (бокситів, нефелінів, алунітів), значними ресурсами титану, цирконію, магнієвої сировини. Розвідані також родовища інших рідкісних кольорових металів.

Виробничий комплекс галузі складається з гірничодобувних підприємств, збагачувальних фабрик, металургійних і металообробних заводів. В Україні діють Іршанський державний гірничо– збагачувальний комбінат (Житомирська область), де видобувають титанові руди, Верхньодніпровський гірничо– металургійний комбінат по видобутку титанових і цирконієвих руд, Побузький нікелевий завод, Артемівський завод по обробці кольорових металів, Торезький завод наплавочних твердих сплавів, Дніпропетровський алюмінієвий завод, Свердловський завод алюмінієвих сплавів (Луганська область), завод повторного свинцю «Укрцинк», Дніпропетровський завод твердих сплавів, напівпровідникових матеріалів та полікристалічного кремнію, Миколаївський глиноземний завод, Никитовський ртутний комбінат, Запорізький титаномагнієвий комбінат та інші підприємства.
При виробництві кольорових металів процеси поділяються на дві групи: пірометалургійні і гідрометалургійні.

Пірометалургійні процеси проводять при високих температурах частіше з повним і рідше з частковим розплавленням металу, а гідрометалургійні – у водних середовищах при температурі не вище 300оС з частковим розплавленням металу.

В окрему групу виділені електрометалургійні процеси, які можуть бути як піро– , так гідрометалургійними. Відмінною рисою цих процесів є використання електроенергії як рушійної енергетичної сили для їх перебігу.

Пірометалургіні процеси за характером протікаючих перетворень, поведінки компонентів, що беруть участь у процесі, і кінцевими результатами поділяють на три групи: випал, плавка і дистиляція.

Випал – металургійний процес, проведений при високих температурах (500– 1200°С) в межах зміни мінералогічного і хімічного складів перероблюваної сировини.

Плавка – це пірометалургійний процес, проведений при температурах, що забезпечують у більшості випадків повне розплавлення перероблювального металу. Розрізняють плавки рудні і рафінувальні. Є різні технології рудних плавок – все залежить від виду кольорових металів і їх руд. При цих плавках одержують метали з різними домішками. Рафінувальні плавки проводять з метою очищення металів від домішок. В основі їх лежать розбіжності в деяких фізико– хімічних властивостях основного металу і його домішок.

Дистиляція – процес випаровування речовин при температурі дещо вищій точки її кипіння, що робить можливим сублімацією розділити компоненти оброблюваного матеріалу залежно від їхньої леткості. Дистиляцією користуються як для переробки рудної сировини, так і для видалення легколетких домішок при рафінуванні або розподілі металевих сплавів. Дистиляцією з метою рафінування називають ректифікацією.

Гідрометалургійні процеси. Гідрометалургійні процеси протікають при низьких температурах на межі поділу найчастіше твердої і рідкої фаз. Будь– який металургійний процес складається з трьох основних стадій: вилужування, очищення розчинів від домішок і осадження металу з розчину.

Вилужування – процес перетворення вилучених металів у розчин (розчинення) при впливі розчинника на перероблювальний матеріал часто при газовому реагенті – кисні, водні та інших. Внаслідок вилужування одержують два продукти: розчин вилуженого металу забруднений домішками, і нерозчинений залишок, що складається з пустої породи. В якості розчинників використовують воду, розчин кислот, лугів або солей.

Очищення розчинів від домішок проводять з метою запобігання їх потрапляння у вилучений метал при наступному його осадженні. Для очищення розчинів вилужування від домішок використовують методи хімічного осадження неорганічними або органічними реагентами, гідроліз, кристалізацію або цементацію.

Осадження металів з очисних розчинів від вилужування проводять електролізом водяних розчинів, цементацією або відновленням газопереробними відновлювачами під тиском.

Іонообмінний процес ґрунтується на спроможності деяких речовин (іонітів) поглинати іони з розчину в обмін на іони того ж знаку, що входять до складу іоніту.

В гідрометалургії кольорових металів, особливо при виробництві рідкісних і благородних металів все більше застосування набувають сорбційні (особливо хемосорбція) і екстракційні процеси.

Застосування цих процесів спрямоване на вирішення таких задач: 1) переведення цінного металу після вилужування з одного розчину в інший більш зручний за сольовим складом для наступної переробки; 2) концентрування металів із розведених розчинників і пульп; 3) селективний розподіл металів і очищення розчинів від домішок [2,3,4].

 

Виробництво алюмінію.

Алюміній посідає перше місце серед металів щодо поширення у природі. Його вміст у земній корі становить 7,45 %. Рудами алюмінію є: боксити, нефеліни, алуніти і каоліни.

Виробництво алюмінію складається із двох основних процесів: добування глинозему з руди та електролізу глинозему. Глинозем одержують трьома способами: лужним, кислотним та електротермічним.

Найбільш поширений лужний спосіб (розроблений у Росії). За цим способом боксит після подрібнення і розмелювання вилуговують концентрованим розчином їдкого натру при температурі 523 0К і тиску 2500– 3000 МПа. Електроліз глинозему проводять у розчині кріоліту (Nа3АlF6) у спеціальних електролізних ваннах. Дно ванни виложене з вуглецевих блоків і є катодом “– “ . Температура електролізу підтримується приблизно 1200 0К. Рідкий алюміній нагромаджується на дні ванни і періодично (через1– 2 доби) забирається з ванни.

Електролітичний алюміній піддають рафінуванню електролітичним способом або продуванням хлором. При електролітичному рафінуванні чистота алюмінію досягає 99,999%.

Последнее изменение этой страницы: 2016-07-22

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...