Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Внутренняя память. Классификация.Назначение

Внутренняя память компьютера предназначена для оперативной обработки данных. Она является более быстрой, чем внешняя память, что соответствует принципу иерархии памяти, выдвинутому в проекте Принстонской машины. Следуя этому принципу, можно выделить уровни иерархии и во внутренней памяти.

Выделяют следующие виды внутренней памяти:

--оперативная. В нее помещаются программы для выполнения и данные для работы программы, которые используются микропроцессором. Она обладает большим быстродействием и является энергозависимой. Обозначается RAM - Random Access Memory -память с произвольным доступом;

--кэш-память (от англ. caсhe – тайник). Она служит буфером между RAM и микропроцессором и позволяет увеличить скорость выполнения операций, т.к. является сверхбыстродействующей. В нее помещаются данные, которые процессор получил и будет использовать в ближайшие такты своей работы. Эта память хранит копии наиболее часто используемых участков RAM. При обращении микропроцессора к памяти сначала ищутся данные в кэш-памяти, а затем, если остается необходимость, в оперативной памяти;

--постоянная память - BIOS (Basic Input-Output System). В нее данные занесены при изготовлении компьютера. Обозначается ROM -Read Only Memory. Хранит:

программы для проверки оборудования при загрузке операционной системы;

программы начала загрузки операционной системы;

программы по выполнению базовых функций по обслуживанию устройств компьютера;

программу настройки конфигурации компьютера - Setup. Позволяет установить характеристики: типы видеоконтроллера, жестких дисков и дисководов для дискет, режимы работы с RAM, запрос пароля при загрузке и т.д;

--полупостоянная память - CMOS (Complementary Metal-Oxide Semiconductor). Хранит параметры конфигурации компьютера. Обладает низким энергопотреблением, потому не изменяется при выключении компьютера, т.к. питается от аккумулятора;

--видеопамять. Используется для хранения видеоизображения, выводимого на экран. Входит в состав видеоконтроллера.

Внутренняя память компьютера предназначена для оперативной обработки данных.

 

DRAM.Организация

DRAM (Dynamic RAM) - В динамической памяти ячейки построены на основе областей с накоплением зарядов, занимающих гораздо меньшую площадь, нежели триггеры, и практически не- потребляющих энергии при хранении. При записи бита в такую ячейку в ней формируется электрический заряд, сохраняющийся в течение нескольких миллисекунд; для постоянного сохранения заряда ячейки необходимо регенерировать — перезаписывать содержимое для восстановления зарядов. Ячейки микросхем динамической памяти организованы в виде прямоугольной (обычно — квадратной) матрицы; при обращении к микросхеме на ее входы вначале подастся адрес строки матрицы, сопровождаемый сигналом RAS (Row Address Strobe — строб адреса строки), а через некоторое время — адрес столбца, сопровождаемый сигналом CAS (Column Address Strobe — строб адреса столбца). Тайминг-время дешифрации 1 байта. Для обращения к ячейке, контроллер задаёт номер банка, номер страницы в нём, номер строки и номер столбца, на все запросы тратится время, помимо этого довольно большая затрата уходит на открытие и закрытие банка после самой операции. На каждое действие требуется время, называемое таймингом. Основными таймингами DRAM являются: задержка между подачей номера строки и номера столбца, называемая временем полного доступа (англ. RAS to CAS delay), задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (англ. CAS delay), задержка между чтением последней ячейки и подачей номера новой строки (англ. RAS precharge). Тайминги измеряются в наносекундах, и чем меньше величина этих таймингов, тем быстрее работает оперативная память.

ROM.Назначение

ROM (Read Only Memory, по-русски ПЗУ - Постоянное Запоминающее Устройство) Информация в ПЗУ записывается на заводе-изготовителе микросхем памяти, и в дальнейшем изменить ее значение нельзя. В ПЗУ хранится критически важная для компьютера информация, которая не зависит от выбора операционной системы. Программируемое ПЗУ отличается от обычного тем, что информация на этой микросхеме может стираться специальными методами (например, лучами ультрафиолета), после чего пользователь может повторно записать на нее информацию. Эту информацию будет невозможно удалить до следующей операции стирания информации.

CMOS.Назначение

CMOS – часть микросхемы BIOS, которая питается от специального аккумулятора на системной плате. В ней хранятся параметры конфигурации компьютера (ОЗУ, тип винчестера, флоппи-дисководы и т.д.). От оперативной памяти она отличается тем, что ее содержимое не стирается во время выключения компьютера, а от ПЗУ она отличается тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы. Эта микросхема постоянно подпитывается от небольшой батарейки, расположенной на материнской плате. Заряда этой батарейки хватает на то, чтобы микросхема не теряла данные, даже если компьютер не будут включать несколько лет.
В микросхеме CMOS хранятся данные о гибких и жестких дисках, о процессоре, о некоторых других устройствах материнской платы. Тот факт, что компьютер четко отслеживает время и календарь (даже и в выключенном состоянии), тоже связан с тем, что показания системных часов постоянно хранятся (и изменяются) в CMOS.
Таким образом, программы, записанные в BIOS, считывают данные о составе оборудования компьютера из микросхемы CMOS, после чего они могут выполнить обращение к жесткому диску, а в случае необходимости и к гибкому, и передать управление тем программам, которые там записаны.

НАСТРОЙКИ CMOS SETUP

1. Включите компьютер. Следите за появлением сообщения о том, как войти в программу CMOS Setup (например, «Press Fl for Setup» — нажмите клавишу Fl для входа в программу Setup). Нажмите соответствующую клавишу для запуска этой программы.

2. Выберите меню «Hard drive settings* (настройка накопителя на жестком диске) и укажите место нахождения накопителя DVD-ROM, например, «primary slave» (основной ведомый) или «secondary master* (дополнительный ведущий) в зависимости от положения перемычек на устройстве.

3. Выберите опцию «Automatic drive detection* (автоматическое опознание устройств), если это возможно. Эта опция автоматически идентифицирует новый накопитель. Если в BIOS нет такой опции, то для устройства DVD-ROM выберите опцию «попе» (нет) или «not install* (не установлен) и полагайтесь только на драйверы.

4. Сохраните изменения и выйдите из программы CMOS Setup. Компьютер автоматически перезагрузится.

 

SRAM.Назначение.
SRAM (Static RAM)- В статической памяти элементы (ячейки ) построены на различных вариантах триггеров — схем с двумя устойчивыми состояниями. После записи бита в такую ячейку, она может пребывать в этом состоянии сколько угодно долго -необходимо только наличие питания. При обращении к микросхеме статической памяти на нее подается: полный адрес, который при помощи внутреннего дешифратора преобразуется в сигналы выборки конкретных ячеек. Ячейки статической памяти имеют малое время срабатывания (единицы-десятки наносекунд), однако микросхемы на их основе имеют низкую удельную плотность данных (порядка единиц Мбит на корпус) и высокое энергопотребление. Поэтому статическая память используется в основном в качестве буферной (кэш-память).В кэше она используется именно потому, что к нему предъявляются очень серьезные требования в плане надежности и производительности. Статическую память делят на синхронную и асинхронную. Асинхронная память уже не используется в персональных компьютерах, она была вытеснена синхронной еще со времен 486-ых компьютеров.. Бывает 1 уровня(в корпусе процессора) и 2 уровня(на материнской плате) Назначение: отображение динамической памяти.

 

Логическое распределение ОП

Для ПК характерно стандартное распределение непосредственно адресуемой памяти между ОЗУ, ПЗУ и функционально ориентированной информацией.

Основная память в соответствии с методами доступа и адресации делится на отдельные, иногда частично или полностью перекрывающие друг друга области, имеющие общепринятые названия. В частности, укрупнено логическая структура основной памяти ПК общей емкостью, например, 16 Мбайт.

Прежде всего, основная память компьютера делится на две логические области: непосредственно адресуемую память, занимающую первые 1024 Кбайт ячеек с адресами от 0 до1024 Кбайт – 1, и расширенную память, доступ к ячейкам которой возможен при использовании специальных программ-драйверов.

Драйвер — специальная программа, управляющая работой памяти или внешними устройствами ЭВМ и организующая обмен информацией между МП, ОП и внешними устройствами ЭВМ.

Драйвер, управляющий работой памяти, называется диспетчером памяти.

Стандартной памятью (СМА — Conventional Memory Area) называется непосредственно адресуемая память в диапазоне от 0 до 640 Кбайт.

Непосредственно адресуемая память в диапазоне адресов от 640 до 1024 Кбайт называется верхней памятью (UMA — Upper Memory Area). Верхняя память зарезервирована для памяти дисплея (видеопамяти) и постоянного запоминающего устройства. Однако обычно в ней остаются свободные участки — «окна», которые могут быть использованы при помощи диспетчера памяти в качестве оперативной памяти общего назначения.

Расширенная память — это память с адресами 1024 Кбайт и выше.

Непосредственный доступ к этой памяти возможен только в защищенном режиме работы микропроцессора.

В реальном режиме имеются два способа доступа к этой памяти, но только при использовании драйверов:

· по спецификации XMS (эту память называют тогда ХМА — extended Memory Area);

· по спецификации EMS (память называют, ЕМ — Expanded Memory).

Доступ к расширенной памяти согласно спецификации XMS (extended Memory Specification) организуется при использовании драйверов ХММ (extended Memory Manager). Часто эту память называют дополнительной, учитывая, что в первых моделях персональных компьютеров эта память размещалась на отдельных дополнительных платах, хотя термин Extended почти идентичен термину Expanded и более точно переводится как расширенный, увеличенный.

Спецификация EMS (Expanded Memory Specification) является более ранней. Согласно этой спецификации доступ реализуется путем отображения по мере необходимости отдельных полей Expanded Memory в определенную область верхней памяти. При этом хранится не обрабатываемая информация, а лишь адреса, обеспечивающие доступ к этой информации. Память, организуемая по спецификации EMS, носит название отображаемой, поэтому и сочетание слов Expanded Memory (EM) часто переводят как отображаемая память. Для организации отображаемой памяти необходимо воспользоваться драйвером EMM386.EXE (Expanded Memory Manager) или пакетом управления памятью QEMM.

Расширенная память может быть использована главным образом для хранения данных и некоторых программ ОС. Часто расширенную память используют для организации виртуальных (электронных) дисков.

 

Назначение драйверов.

Для организации вызывания программ логического распределения оперативной памяти существуют 2 драйвера: EMM386.exe и HIMEM.sys. Их назначение - организация страничной передачи данных между дополнительной и основной памятью. Если их удалить,операционная система больше 1 МБ не увидит. Они использовались до 98 windows

 

Организация ввода/вывода

Помимо центрального процессора (ЦП) и памяти, третьим ключевым элементом архитектуры ВМ является система ввода/вывода (СВВ). Система ввода/вывода призвана обеспечить обмен информацией между ядром ВМ и разнообразными внешними устройствами (ВУ). Технические и программные средства СВВ несут ответственность за физическое и логическое сопряжение ядра вычислительной машины и ВУ. Основные функции 1. Обеспечение интерфейса с ЦП и памятью 2. Обеспечение интерфейса с одним или несколькими периферийными устройствами Основные задачи I/O: 1. Установление связи между памятью и устройствами i/o 2. Синхронизация передачи данных 3. Обеспечение буферизации 4. Преобразование кодов 5. Требование при необходимости работы центрального процессора 6. Завершение операции Главный недостаток – нельзя организовать параллельный I/O и решение основной задачи. Архитектура системы I/O

· Программный I/O (Полный контроль ЦП и реализуется спец. процедурой I/O)

· Канальный I/O (Чтобы повысить эффективность работы ЦП сконструирована ЭВМ с канальной системой I/O, каналы которой непосредственно и управляют процесс I/O)

Пропускная способность шины характеризуется количеством единиц информации (байтов), которые допускается передать по шине за единицу времени (се­кунду), а определяется физическим построением шины и природой подключае­мых к ней устройств. Очевидно, что чем шире шина, тем выше ее пропускная способность.

Устройство ввода-вывода может выполнить эти задачи аппаратными средствами быстрее, чем ЦП может выполнить их программными методами. Устройство ввода-вывода ЭВМ может быть программируемым и даже содержать процессор для реализации его некоторых задач.

Адресная шина передает адрес порта ввода или вывода, который нужен для использования ЦП. Сигнал ввода-вывода определяет направление передачи. По шине данных осуществляется передача информации между устройствами. Шина управления передает сигналы, указывающие, что данные готовы и что передача завершена. Что касается шин между ЦП и ЗУ, то некоторые из них могут быть одними и теми же, но разделенными во времени для выполнения различных операций.

 
  Шина PCI (Peripheral Component Interconnect) - шина соединения периферийных компонентов, являющаяся мостом между системной шиной процессора и шиной ввода-вывода ISA. В каждом обмене по шине участвуют два устройства - инициатор обмена (ведущий шины) и целевое устройство (ведомый шины). Шина PCI стала массово применяться для Pentium-систем, но используется и с 486 процессорами, и имеет две модификации: шина PCI 32-разрядная и шина PCI 64-разрядная
  Шина ISA (Industry Standard Architecture) - шина расширения, ставшая промышленным стандартом. Она обеспечивает возможность отображения 8- и 16-разрядных регистров на пространство ввода-вывода и памяти. Абоненты шины могут использовать три 8-битных канала DMA, а на 16-битной шине доступны еще три 16-разрядных канала. Канал DMA используется для обеспечения арбитража управления шиной, а адаптер Bus-Master формирует все адресные и управляющие сигналы шины
  Шина AGP (Accelerated Graphic Port) - специализированная системная шина для видеокарты, имеющая разрядность 32-бита.

Последнее изменение этой страницы: 2016-08-29

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...