Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






МЕТОДЫ РЕНТГЕНОВСКОЙ СПЕКТРОСКОПИИ

Возможности изучения состава и структуры сложных веществ по характеристическим рентгеновским спектрам непосредственно следу­ют из закона Мозли, утверждающего, что квадратный корень из численных значений термов для линий спектров испускания или для ос­новного края поглощения является линейной функцией атомного но­мера элемента или заряда ядра. Терм — числовой параметр, характе­ризующий частоту спектров поглощения. Линии характеристического рентгеновского спектра немногочисленны. Для каждого элемента их число вполне определенное и индивидуальное.

Достоинством анализа рентгеновского спектра [метод рентгенов­ской спектрометрии является то, что относительная интен­сивность большинства спектральных линий постоянна, и основные параметры излучения не зависят от химического состава соединений и смесей, в которые входит данный элемент. В то же время количест­во линий в спектре может зависеть от концентрации данного элемен­та: при очень малых концентрациях элемента в спектре соединения появляются только две-три ярко выраженные линии. Для анализа со­единений по спектрам необходимо определить длины волн основных линий (качественный анализ) и их относительную интенсивность (ко­личественный анализ). Длины волн рентгеновских лучей имеют тот же порядок, что и межатомные расстояния в кристаллических решет­ках исследуемых веществ. Поэтому, регистрируя спектр отраженного излучения, можно получить представление о составе исследуемого соединения.

Известны разновидности метода , в которых используются вторичные эффекты, сопровождающие процесс взаимодействия рентге­новского излучения с веществом биопробы. К данной группе методов в первую очередь относятся эмиссионная рентгеноспектрометрия , при которой регистрируется рентгеновский спектр, возбуж­денный электронами, и абсорбционная рентгеноспектрометрия , по механизму взаимодействия излучения с веществом анало­гичная методу абсорбционной спектрофотометрии.

Чувствительность методов очень сильно меняется (от 10-4 до 5,10-10 %) в зависимости от выхода характеристического излучения, контрастности линий, метода возбуждения, методов регистрации и раз­ложения излучения в спектр. Количественный анализ данных можно проводить по спектрам излучения (первичным и вторичным) и спектрам поглощения. Невозможность строгого учета взаимодействия излучения с атомами вещества, а также влияния всех условий проведе­ния измерения заставляют ограничиваться измерениями относительной интенсивности излучений и использовать методы внутреннего или внешнего стандарта.

При исследовании структуры и свойств молекул, процессов ассо­циации молекул и взаимодействия их в растворах широко применяется рентгенофлуоресцентная спектрометрия , о которой уже говорилось выше.

Длины волн рентгеновских лучей имеют тот же порядок, что и межатомные расстояния в кристаллических решетках исследуемых ве­ществ. Поэтому при взаимодействии рентгеновского излучения с про­бой возникает характерная дифракционная картина, отражающая осо­бенности структуры кристаллических решеток или дисперсных систем, т. е. характеризующая состав исследуемого соединения. Исследование структуры соединений и их отдельных компонентов по дифракцион­ным картинам рассеяния рентгеновского излучения на кристаллических решетках и неоднородностях структур положено в основу рентгеноструктурного анализа . Регистрация спектра может осу­ществляться с помощью фотографической пленки (качественный ана­лиз) либо ионизационных, сцинтилляционных или полупроводниковых детекторов. Данный метод позволяет определять симметрию кристал­лов, величины, форму и типы элементарных ячеек, проводить количе­ственные исследования гетерогенных растворов.

МЕТОДЫ ЭЛЕКТРОННОЙ МИКРОСКОПИИ

Значительное увеличение разрешающей способности в микроскопе можно получить при использовании пучков быстролетящих в вакууме электронов. Эффект взаимодействия электронных пучков с веществом используется в электронных микроскопах. Принципиально разрешение электронного микроскопа могло бы превосходить разрешение светово­го микроскопа в сотни тысяч раз, так как эквивалентная длина волны для электрона

, (4.6)

где h — постоянная Планка; U— ускоряющая разность потенциалов.

Однако разрешение определяется не только явлениями дифракции, но и различными аберрациями электронных линз, используемых для фокусировки электронных пучков. Эти аберрации полностью некоррелируемы, хотя и несколько исправляются главным образом диафрагми­рованием и применением электронных пучков малых апертур. Поэто­му разрешение современных электронных микроскопов не превышает 0,45—0,5 мкм и всего в несколько сот раз выше разрешения лучшего светового (ультрафиолетового) микроскопа (200—250 мкм).

Окончательное изображение в микроскопе формируется на флуо­ресцирующем экране или фотопластинке. Контраст изображения опре­деляется долями электронов, рассеянных на микроучастке и прошед­ших через апертуру. Для управления электронными пучками использу­ются центрированные максимально симметричные электрические и маг­нитные поля, т. е. электронные линзы электростатического или маг­нитного типов. При получении изображений достаточной яркости не­посредственно в электронном микроскопе с увеличением в несколько сот тысяч раз плотность тока на объекте должна достигать нескольких ампер на квадратный сантиметр. Чтобы уменьшить нагрев образца, приходится сильно уменьшать облучаемую область (до нескольких квадратных микрометров). Важным достоинством электронного микроскопа является большая глубина резкости, превосходящая почти на три порядка глубину резкости оптического микроскопа.

Метод эмиссионной электронной микроскопии по­зволяет получить изображение объекта в электронах, которые эмити­рует сам объект. Эмиссия может быть результатом нагрева (термо­электронная эмиссия), освещения (фотоэлектронная эмиссия), бом­бардировки электронами или ионами (вторичная электронная или ионно-электронная эмиссия), действия сильных электрических полей (автоэлектронная эмиссия). Разрешение эмиссионных микроскопов значительно хуже просвечивающих ив зависимости от типа эмиссии достигает 20—100 мкм.

В методе отражательной электронной микроскопии ( ) изображение формируется в отраженных образцом электронах. Распре­деление отраженных электронов существенно зависит от углов облуче­ния и наблюдения, а также от материала образца. Разрешение такого микроскопа не выше 25—30 мкм.

В методе растровой электронной микроскопии (РЭМС) обра­зец сканируется тонким электронным пучком, обегающим за время развертки всю исследуемую поверхность. В каждой точке соприкос­новения электронного луча с веществом возникает ряд излучений: вторичные и рассеянные электроны, рентгеновские лучи, световое излучение и т. д., которые используются для получения изображе­ний на экранах электронно-лучевых трубок. Разрешение растровых микроскопов определяется диаметром пучка и видом используемого излучения.

Теневое изображение объекта получается с помощью метода тене­вой электронной микроскопии (ТЭМС), при котором тонкий элек­тронный пучок, облучающий образец, остается неподвижным. Разре­шение теневого микроскопа определяется диаметром пучка и характе­ром дифракционных явлений. На образование изображения влияют различия в рассеянии и поглощении электронов разными участками образца. Яркость изображения получается значительно ниже, чем при использовании метода просвечивающей электронной микроскопии (ПЭМС), и для ее увеличения возможно применение способов повы­шения контраста, например, с помощью электронно-оптических преоб­разователей.

Непосредственное исследование жидких проб в электронных мик­роскопах невозможно, поэтому обязательной является предварительная их подготовка: обезвоживание, высушивание и заключение в некото­рую формирующую среду, которая исключает появление артефактов, способных исказить результаты исследований.

 

Лекция № 12

Последнее изменение этой страницы: 2016-08-29

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...