Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Функциональная схема и принцип работы.

 

 

Автоматический Р/компас АРК-15М построен по классической схеме автоматического Р/пеленгатора, где заложен принцип сравнения амплитуд принимаемых сигналов на входе приемника и со следящим приводом на выходе, то есть принцип воздействия выходных сигналов приемника на его вход.

Р/компас имеет три режима работы:

«Компас» - основной режим работы, который используется для автоматического пеленгования;

«Антенна» - Р/компас работает как обычный средневолновый Р/приемник, принимает сигналы и служит для прослушивания и опознавания позывных сигналов Р/ст.;

«Рамка» - вспомогательный режим работает, при котором Р/компас работает только с рамочной антенной и используется в условиях интенсивных электростатических помех.

Рассмотрим принцип работы каждого из этих режимов по упрощенной функциональной схеме.

Режим «Компас». В режиме «Компас» принцип работы состоит в приеме и сложении сигналов от двух антенн – ненаправленной и рамочной. Прием сигнала на всенаправленную антенну не зависит от направления прохода Р/сигнала. Рамочная же антенна обладает направленным свойством и приемом сигнала и зависит от ее положения относительно направления на пеленгуемую Р/ст.

Функциональная схема состоит из рамочных входных цепей, приемного тракта с телефонным и компасным выходом, управляющей схемы воздействие выхода на вход, схемы «Сетки частот», субблока питания и ПДУ.

Схема рамочных входных цепей состоит из рамочной антенны, эквивалента кабеля рамки, гониометра, усилителя с фазирующей RC цепью и коммутатора фазы (балансного модулятора).

Рамочная антенна представляет собой две взаимно перпендикулярные неподвижные обмотки на ферритовом сердечнике, соединенные высокочастотными фидерами со статорными обмотками гониометра. С зажимом каждой из обмоток рамочной антенны ЭДС передается в свою полевую катушку гониометра через эквивалент кабеля рамки.

Эквивалент радиочастотного кабеля рамки необходим для доведения параметров рамочного кабеля, длинна которого может меняться для разных типов самолета. С помощью эквивалента предотвращается расстройка рамочных контуров при использование рамочных кабелей различной длинны.

Бесконтактный индукционный преобразователь сигналов гониометрический (ПСГ-2),именуемый для упрощения – гониометр, представляет систему из двух взаимно перпендикулярных неподвижных обмоток, внутри которых расположена подвижная искательная катушка. Каждая из катушек гониометра соединена с одной обмоткой рамочной антенны.

Рис. Неподвижная рамочная антенна: а) обмотки на ферритовом стержне

(конструктивное исполнение); б) обмотки рамочной антенны

(схема электрическая).

 

При автоматическом определении КУР в каждом из двух обмоток рамочной антенны будет наводиться ЭДС, которая передается на статорные обмотки гониометра, а следовательно, возникает магнитное поле от каждой обмотки. Результирующий вектор магнитного поля Н от обеих обмоток будет всегда совпадать с направлением на пеленгуемую Р/ст. искательная катушка гониометра может изменять свое положение относительно результирующего вектора магнитного поля Н и величена ЭДС, наведенная в искательной катушке, будет зависеть от ориентации ее относительно результирующего вектора магнитного поля, а следовательно, и от направления на пеленгуемую Р/ст.

Диаграмма направленности искательной катушки имеет вид «восьмерки», то есть искательная катушка гониометра обладает теми же свойствами, что и подвижная рамочная антенна, применяемая в АРК-11 или АРК-5. Однозначность отсчета в искательной катушке так же, как и в подвижной рамке, возникает за счет действия поля ненаправленной антенны, которое создает результирующую диаграмму направленности с одной зоной устойчивого нулевого приема. ЭДС в искательной катушке будет наводиться с начальной фазой 0 или 180 в зависимости от стороны отклонения ее относительно направления на Р/ст., а величина наводимой ЭДС – от величины угла отклонения.

Таким образом, вращая искательную катушку гониометра, мы как бы вращаем рамочную антенну в модели электромагнитного поля, определяя направления на Р/ст. эффективность передачи сигнала определяется коэффициентом связи, который для данного бесконтактного гониометра = 0,9.

Снятый с искательной катушки гониометра сигнала, величина и высокочастотная фаза которого определяется направлением на пеленгуемую Р/ст., поступает на усилитель рамки с фазовращающейся RC цепочкой и далее на вход коммутатора фазы. Во входной контур усилителя включен варикап, который в зависимости от диапазона частот обеспечивает необходимую величину емкости, а следовательно, необходимую частоту настройки Р/компаса. Каждый из пяти модулей высокой частоты имеет свой входной контур. Фазосдвигающая RC цепочка обеспечивает фазовые соотношения между сигналом от рамочной и ненаправленной антенн, их синфазность или противофазность. Усиленный сигнал далее поступает на коммутатор фазы.

 

 

Рис. Формы напряжений в характерных точках схемы АРК-15М: 1 — на входе гониометра; 2 — местного звукового генератора; 3 — на выходе коммутаторов фазы; 4 — от ненаправленной антенны; 5 — суммарное напряжение на выходе контура; 6 — на выходе усилителя компасного ка­нала; 7 — направление вращения двигателя искателя го­ниометра.

 

Коммутатор фазы (балансный модулятор) представляет собой два диодных ключа, управляемых напряжением частоты 135 Гц от местного звукового генератора, и в каждый полупериод часто­ты 135 Гц происходит изменение фазы сигнала искательной ка­тушки на 180°. Одновременно напряжение звукового генератора частоты 135 Гц подается на обмотку возбуждения электродвига­теля вращения искательной катушки. С выхода коммутатора фазы измененный по фазе сигнал поступает в контур сложения, где складывается с сигналом ненаправленной антенны. Между ненаправленной антенной и контуром сложения установлено АСУ, представляющее собой составной эмиттерный повторитель, собранный на полевом транзисторе. АСУ предназначено для уси­ления и согласования сигнала ненаправленной антенны со вхо­дом приемника с учетом влияния антенного кабеля и разброса действующих высот ненаправленной антенны.

В контуре сложения происходит суммирование двух сигналов. В результате суммарный сигнал будет амплитудно-моделированным по закону огибающей частоты 135 Гц. Эта огибающая явля­ется управляющим напряжением, начальная фаза которого зави­сит от стороны отклонения искательной катушки относительно направления на радиостанцию и может отличаться на 180°.

 

Для выделения и усиления управляющего напряжения в схеме радиокомпаса предусмотрен приемный тракт супергетеродинного типа, состоящий из УВЧ, смесителя и гетеродина, УПЧ, детекто­ра сигнала и АРУ, УНЧ телефонного выхода и усилителя компас­ного выхода. На выходе детектора сигнала выделяется управляю­щее напряжение частоты 135 Гц, которое поступает на управляю­щую обмотку электродвигателя. Обмотка возбуждения этого дви­гателя запитывается напряжением от звукового генератора часто­ты 135 Гц. Двигатель вращается и вращает искательную катушку гониометра до тех пор, пока она не займет положение нулевого приема, что соответствует КУР. Изменение положения искатель­ной катушки передается при помощи сельсинов на индикаторные приборы УШДБ-2К и РМИ-2Б. Таким образом, в радиокомпасе реализован принцип сравнения амплитуд принимаемых сигналов на входе приемника и следящим приводом на его выходе.

Одновременно на выходе детектора сигнала выделяются низ­кие частоты (позывной, речь, музыка), которые поступают на УНЧ телефонного выхода для прослушивания.

Режим «Антенна». В этом режиме радиокомпас работает как обычный средневолновый радиоприемник, принимает сигналы только через ненаправленную антенну. При этом отключаются звуковой генератор, рамочный вход, один из каскадов усилителя компасного выхода и управляющая схема. Режим «Антенна» предназначен для прослушивания и опознавания позывных сиг­налов радиомаяков. Если радиомаяк работает немодулированны­ми колебаниями, то его сигналы прослушиваются включением внутренней телеграфной модуляции переключателем «ТЛФ — ТЛГ» в положении «ТЛГ» на пульте управления радиокомпасом.

Режим «Рамка» — вспомогательный режим работы. Радио­компас при этом работает только с рамочной антенной и исполь­зуется в условиях электростатических помех. В этом режиме напряжение звукового генератора снимается с балансного моду­лятора, разрывается цепь электропитания одного плеча модуля­тора. Балансный модулятор превращается в обычный усилитель канала рамки. Снимается питание с одного из каскадов усилите-

ля компасного выхода, отключается питание АСУ и разрывается цепь связи с ненаправленной антенной. В приемник поступает сигнал от искательной катушки гониометра и радиокомпас рабо­тает только на телефонный выход.

При помощи кнопки «Рамка» на пульте управления произво­дят вручную вращение искательной катушки и по минималь­ной слышимости сигнала определяют пеленг на радиостанцию. Поскольку диаграмма направленности искательной катушки имеет вид восьмерки с двумя зонами минимального приема, по­этому в режиме «Рамка» возникает ошибка в отсчете на 180°.

Радиодевиация самолета— это ошибка в измерении направ­ления на радиостанцию, вызванная действием вторичного поля излучения от металлического фюзеляжа самолета, и определяет­ся как:

 

 

Δр = КУР - ОКР

где:

Δр — радиодевиация;

КУР — курсовой угол радиостанции;

ОКР — отсчет радиокомпаса.

 

Радиодевиация различна для различных направлений относи­тельно оси самолета. Для корпуса самолета, имеющего вытяну­тую сигарообразную форму, ошибка всегда имеет четвертной ха­рактер, то есть обращается в ноль на углах 0, 90, 180, 270°. Четвертная составляющая радиодевиации компенсируется схе­мой электрической компенсации, заложенной в самой конструк­ции рамочной антенны, а именно, продольная рамка имеет боль­шую ЭДС, чем поперечная, так как витки продольной рамки намотаны на длинных сторонах прямоугольного сердечника (феррита) (см. рис. 6.2) и, следовательно, площадь их сечения, а значит и действующая высота продольной рамки больше попе­речной. Поперечная рамка намотана на коротких сторонах сер­дечника, поэтому ее действующая высота меньше. За счет раз­ных действующих высот создается неодинаковость рамочных ан­тенн, поэтому вводится поправка в величину суммарной ЭДС, наводимой на искательную катушку гониометра при различных углах. Эта поправка компенсирует четвертные ошибки радиоде­виации до величины 15 ÷ 19°. Отклонение радио девиации от чет­вертного характера как остаточная радиодевиация компенсиру­ется механическим компенсатором. С помощью механического компенсатора радиодевиации вводится поправка в показания стрелки индикатора курсового угла в соответствии с кривой ос­таточной радиодевиации. Поправка вводится в схему дистанци­онной передачи положения оси искателя гониометра на ротор вращающегося трансформатора — датчика системы дистанци­онной передачи угла на указатели курса.

Последнее изменение этой страницы: 2017-07-07

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...