Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Вашему вниманию предлагается курс лекций и




Примеры лекций и практик

Курс “Компьютерное моделирование”

Доц.Богданова М.В.

Уважаемые студенты!

Вашему вниманию предлагается курс лекций и

содержание практических занятий, после изучения

Которых Вам будет необходимо сдать зачет, содер жащий 1 теоретический вопрос из лекций и 1 задача

Из практического курса.

Удачи Вам в изучении данного предмета!

Понятие модели, виды моделей

Модель – схематическое представление того или иного предмета, с помощью выбранных средств моделирования.

Модель отражает основную структуру предмета и его свойства, существует большое количество классификаций моделей.

Модель – абстрактный образ объекта или явления и отношений между отдельными частями объекта или явления.

Любая модель это некоторая абстракция, звено в цепочке познания от опыта к абстракции, к осмыслению. Когда осмыслили снова опыту, к практике.

Процесс создания модели называется моделированием.

Существует несколько распространенных видов классификаций моделей определяющихся следующими принципами:

1) областью использования (учебные модели, опытные модели, научно-технические модели, игровые модели);

2) с учетом моделью временного фактора (статические и динамические модели);

3) отрасль знаний (экономика, история, биология и др.);

4) способ представления модели (материальные и абстрактные модели).

Учебные модели используются в процессе обучения – это обучающие программы, различные тренажеры, наглядные пособия.

Опытные модели – уменьшенные или увеличенные копии объекта, используемые для подробного исследования объекта и прогнозирования его будущих характеристик. Например: модель самолета, которая подвергается воздействию в аэродинамической трубе.

Научно-технические модели созданы для исследования процессов. К таким моделям можно отнести стенд для проверки работы схем, транзисторов и т. д..

Игровые модели – деловые, спортивные, экономические, военные и т. п. игры.

С помощью этих моделей можно разрешать конфликтные ситуации, оказывать психологическую помощь.

Имитационная модель –не просто отражает реальность с той или иной степенью точности, а имитирует ее.

Статическая модель – это единовременный срез информации по данному объекту.

Динамическая модель представляет собой картину изменения объекта во времени.

Материальные модели всегда имеют реальное воплощение и могут отражать:

1) внешние свойства исходных объектов;

2) внутренние устройства исходных объектов;

3) суть процессов и явлений происходящих с объектами оригинала. (Примеры: скелет, чучело, робот).

Абстрактная модель не имеет естественного воплощения, основу этой модели составляет информация, она делится на мысленную и вербальную.



Мысленная модель возникает в процессе любой созидательной деятельности человека.

Вербальную модель человек использует для передачи своих мыслей другим (слова, разговор).

Информационные модели делятся на образно-знаковые и знаковые модели.

Фотографии, географические карты, диаграммы – это образно-знаковые модели, они учитывают цвет и форму. Их можно разделить на:

1) геометрические (чертеж, план, карта, рисунок) отображающие внешний вид оригинала;

2) структурные модели отображающие строение объектов и связи их параметров (таблица, граф, схема, диаграмма);

3) словесные модели зафиксированные средствами языка;

4) алгоритмическая модель(нумерованный список, блок-схема).

Знаковые модели делятся на:

1) математические модели представленные математическими формулами, отображающие связи различных параметров объекта, системы, процесса;

2) специальные модели представленные на специальных языках (химические формулы, ноты и др.);

3) алгоритмические модели представлены в виде программы записанной на специальном языке программирования.

Имитационное моделирование – это процесс конструирования на ЭВМ сложной реальной системы функционирующей во времени и подстановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить различные стратегии обеспечив функционирование данной системы.

 

Модель детерминированная

Если каждому входному набору параметров соответствует вполне определенный и однозначно определенный набор выходных параметров. В противном случае модель не детерминированная (стохастическая, вероятностная).

Пример: Рассматривается физическая модель свободного падения тела.

Данная модель является детерминированной.

Если бы учли случайный параметр, например порыв ветра с силой p при падении тела, то S считалось бы по другой формуле: S = (g(p) · t2)/2 и модель называлась бы стохастической.

 

Модель теоретико-множественная

Если она представима с помощью некоторых множеств и отношений принадлежности им и между ними.

Пример: Пусть задано множество X = Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна. Заданы отношения: Николай – супруг Елены, Екатерина – супруга Петра, Татьяна – дочь Николая и Елены, Михаил – сын Петра и Екатерины. Семья Николая и Петра дружат друг с другом. Множество X и множество перечисленных отношений Y могут служить теоретико-множественной моделью двух дружеских семей.

Изобразить с помощью графов:

 

Модель логическая

Если она представима предикатами или логическими функциями.

Пример: Совокупность двух логических функций

может служить математической моделью одноразрядного сумматора.

 

Модель игровая

Если она описывает, реализует некоторую игровую ситуацию.

 

Модель алгоритмическая

Если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим её функции.

Пример: Алгоритмической моделью квадратного корня может служить алгоритм вычисления его приближенного сколь угодно точного отношения по известной рекуррентной формуле.

 

Модель визуальная

Если она позволяет визуализировать отношения и связи моделируемой системы.

 

Модель натурная

Если она материальная копия объекта моделирования.

Пример: Глобус.

 

Модель геометрическая

Если она представима геометрическими образами и объектами.

Пример: Прямая линия является моделью числовой оси.

Параллелограмм является моделью плоскости, либо моделью квадрата.

 

Модель клеточно-автоматная

Если она представляет систему с помощью клеточного автомата.

Пример: Классическая клеточно-автоматная модель: игра «жизнь» Дж. Конвея.

 

Модель фронтальная

Самая сложная, она описывает эволюцию моделируемой систему эволюции фронтальных объектов.

Пример: Множество Кантора.

Возьмем отрезок [0; 1] и разобьем его на три части.

Выбросим из донного отрезка средний отрезок и каждый из оставшихся отрезков опять разобьем на три части.

Из каждого отрезка выбросим средние части и каждый из оставшихся отрезков опять разобьем на три части.

Продолжая разбиение таким образом получим множество называемое множеством Квантора.

В пределе получаем несчетное множество изолируемых точек.

Фронтальная модель применяется обычно тогда, когда реальный объект нельзя представить в виде классической модели. Когда имеем дело с нелинейностью (много вариантностью) путей развития, необходимостью выбора и недетерминированностью (хаотичностью и необратимостью) процесса.

Пример: Математические модели динамики эпидемии инфекционной болезни, радиоактивного распада, усвоение второго иностранного языка и др..

 

Основные свойства любой модели

1º. Конечность. Модель отражает оригинал лишь в конечном числе его отношений.

2º. Упрощенность. Модель отражает только существенные стороны объекта, и кроме того модель должна быть проста для исследования или воспроизведения.

3º. Приблизительность. Действительность отображается моделью грубо или приблизительно.

4º. Адекватность. Модель должна успешно описывать моделируемую систему.

5º. Наглядность, обозримость основных свойств и отношений.

6º. Доступность и технологичность для исследования и воспроизведения.

7º. Информативность. Модель должна содержать достаточную информацию о системе и давать возможность получить новую информацию.

8º. Сохранение информации содержащейся в оригинале.

9º. Полнота. В модели должны быть учтены все основные связи и отношения необходимые для обеспечения цели моделирования.

10º. Устойчивость. Модель должна описывать и обеспечивать устойчивость поведения системы, даже если она в начале является не устойчивой.

11º. Замкнутость. Модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений.

 

Компьютерное моделирование

Компьютерное моделирование – основа представления знаний в ЭВМ.

Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.

Процесс моделирования связан с разработкой систем компьютерного моделирования.

Разновидностью компьютерного моделирования является вычислительный эксперимент, т. е. эксперимент осуществляемый с помощью компьютерной среды или технологии.

Вычислительный эксперимент становится новым инструментом, методом научного познания новой технологии из-за необходимости исследования сложных и нелинейных математических моделей системы.

Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать ход событий.

Пример: Модель повторяющейся эпидемии.

 

Модели повышенной сложности.

1. Стохастические модели.

При изучении экономических явлений часто используют модели вероятностного типа. Они отличаются от детерминических моделей. Детерминические модели не использую случайных явлений и их связи во времени.

Стохастические модели используют взаимозависимость случайных явлений во времени. Стохастические модели существуют со времени возникновения теории вероятностей. Примерами таких моделей можно считать схему бросания кости или выбор карты.

Если в относительных величинах анализируемых детерминистскими моделями существует стабильность а случайными отклонениями пренебрегают, то в стохастических моделях учитываются случайные отклонения.

Задание: подготовить проект одной стохастической модели, которая включает в себя случайное отклонение.

В экономике стохастические модели имеют наибольшее применение, т.к. экономические отклонения на рынке распространены и они имеют случайный характер.

Кроме экономики случайные процессы моделируются в психологии и педагогике, биологии. Для модели соответствующей данному предмету приходится генерировать случайное число, либо в языках программирования, либо в прикладных сферах. Но генерация случайных чисел, это не создание модели полностью.

При вычислении площади криволинейной трапеции используется формула учитывающая случайности (метод Монте-Карло)

Рассмотрим пример экономической задачи, в которой присутствует случайное отклонение.

Если рассмотреть экономическую модель, то она моделирует поведение групп станков поточной линии. Перед каждым станком имеется страховой задел (Si). Этот задел содержит детали необходимые для обеспечения станка необходимыми деталями. При недостатке страхового задела станки будут простаивать и это приведёт к снижению производительности линии. Задача сводится к нахождению страхового задела, который минимизирует издержки производства. Пусть линия состоит из m станков, zi – число полуфабрикатов поступающих на i станок после i-1 операции.

 
 

 

 


Будем предполагать, что поломки любого станка распределяются равномерно в течении главного периода работы (Т) линии . Исправление неисправности станка занимает небольшое время по сравнению с Т работой линии. Задача: найти оптимальный страховой задел s1,s2,s3,…,sm.

В такой постановке задача может быть решена методом динамического программирования, который основан на двух принципах:

1. Пошаговое конструктивное решение

2. Оптимальность

Этапность решения задачи следующая: конструируется целевая функция на первом шаге для последнего станка, находится оптимальный страховой задел Sm. На втором шаге записывается целевая функция для двух последних станков и находится Sm-1 и …Sm. И так далее пока не найдём S1.

Обозначим через ti – время работы i-го станка за период Т. Для задания этой величины надо задать закон распределения ti.

Fi(t) - плотность распределения ti.

Pi – штраф i-го станка в единицу времени.

Hi – стоимость детали после i-1 операции.

λi – производительность i-го станка в единицу времени.

τi – простой i-го станка.

Выводим τi следующим образом:

τi =

τi – случайная величина.

По формуле из теории вероятностей определяется математическое ожидание затрат для i-го станка из-за его простоев:

 

- математическое ожидание затрат для i –го станка.

Обозначим через ri число неиспользованных деталей после окончания работы линии.

Определим по готовой формуле математическое ожидание неиспользованных деталей для этого станка.

L1i= - математическое ожидание неиспользуемых деталей для i-го станка.

Составим уравнение характеризующее работу для поточной линии.

1. Qm=Lm+L1m – математическое ожидание затрат от простоев неиспользованных деталей. Находим min значение Qm с помощью оптимизации полученной функции.

2. Находим Qm-1=Lm-1+L1m-1 затраты для m-1 станка. Находится min оптимизационной функции

3. …

m. Q1=L1+L11

Таким образом задача сводится к системе уравнений в которых находится min целевых функций для любого станка.

Решить эти уравнения или найти целевую функцию можно либо составлением программы, либо графическим методом линейного программирования, но в любом случае система уравнений представляет собой стохастическую модель для описания экономического процесса.

 

Пример использования системы дифференциальных уравнений в биологии.

Примером использования системы дифференциальных уравнений в биологии является модель биоценоза с учётом введённых допущений.

N1 число жертв.

N2 число хищников.

α1 – коэффициент естественного прироста жертв.

α2 – коэффициент естественной убыли хищников.

β1 – коэффициент уничтожения хищниками своих жертв.

β2 – коэффициент защиты жертв от хищников.

Уравнение приводится к нормированному виду – это освобождение от всяких масштабных единиц, тогда система имеет вид:

где относительное число жертв.

относительное число хищников.

τ- нормированное время.

B= - коэффициент.

Данная система решается в среде MathCad, здесь же строятся графики зависимости х от τ и у от τ.

 

Графы.

Рассмотрим основное средство создания информационных моделей. К ним можно отнести словесное описание объекта (художественное вещества, статья о нём в словаре). Самым распространённым методом в создании информационной модели является метод описания.. Другим распространённым методом построения и визуализации информационных моделей является графы.

Граф-это отражение некоторого отношения установленного между фиксированными множествами. Из двух множеств в составляющих графа -одно это множество элементов (вершины) а другое множество связей между ними (линии произвольной конфигурации). Граф состоит из множества вершин x и связей между ними U, обозначается G(x,U).

Пример. Известно, что трое учеников учащихся в одном классе помогают друг другу по разным предметам. Изобразим граф отражающий отношение помощи учащихся:

Если порядок соединения не важен, а важно то как они соединены, то такое соединение называют ребром графа А-В. Если важен порядок соединения вершин то такое соединение называют дугой графа и обозначают →.

Граф у которого вершины соединены дугами называют ориентированным. Граф у которого вершины соединены рёбрами называют неориентированным. Граф, вершины которого соединены и дугами и рёбрами называют смешанным.

Две вершины графа называют смежными, если они определяют дугу или ребро. Если вершина являются началом или концом дуги, то говорят, что вершина инцидентна дуге или ребру. Вершины не инцидентные никакому ребру или дуге называют изолированными.

Вершина инцидентная только одному ребру или дуге называется висячей.

Ребро или дуга, граничными вершинами которой является одна и та же вершина называется петлёй.

Виды графов.

Граф без петель и кратных рёбер (дуг) называется обыкновенным (простым, скелетным, графом Берже).

Граф без петель, но с кратными рёбрами (дугами называют мультиграфом).

Граф, соединённый только изолированными вершинами называется пустым или ноль графом.

Обыкновенный граф, в котором любые две вершины соединены ребром называются сльносвязанным или полным графом.

Части графов.

Подграфом С графа G называют граф, образованный из графа G опусканием некоторых вершин и инцидентных им рёбер. Исходный граф по отношению к подграфу является надграфом.

2. подграф графа 1
1. надграф графа 2

 

1) 2)

Если в результате преобразований число вершин осталось прежним, но были опущены некоторые ребра (дуги)/, то вновь образованный граф считают частичным графом (субграфом) исходного графа.

Данный граф является субграфом графа 1, а исходный граф 1 является сверхграфом.

 

 

3)

Маршруты

Маршрут определяется как некоторая последовательность ребер, в котором граничные вершины двух соседних ребер совпадают, например, последовательность ребер 1, 4, 8, 6 – маршрут.

Маршрут, все ребра которого разложены, называется цепью, например, 5, 6, 4, 2.

Замкнутая цепь – это цепь возвращающаяся в ту же вершину, из которой начиналась и она называется циклом, например, 5, 7, 3.

Граф, любая пара вершин которого может быть соединена маршрутом, называется связным, например, 1-3 – связные.

Несвязный граф представляет собой совокупность отдельных частей (подграфов) называемых компонентами связности, например:

4) 5)

Связный граф не создающий циклов, называется деревом, например:

Дерево имеет n вершин, соединенных n-1 ребром.

Несвязный граф, компоненты которого являются деревьями, называется лесом, например:

Способы задания графа

Произвольный граф можно задать совокупностью двух множеств – множество вершин и множество ребер. Вторым способом задания графа является представление его с помощью матрицы.

Матрица связности имеет вид квадратной таблицы, в которой представлены отношения между вершинами, где элемент матрицы – это количество связей (ребер или дуг) для других двух вершин. Если вершины смежные, то ячейка таблицы примет значение 1, если вершины соединены краевыми ребрами, то ячейка таблицы примет значение 2. Так для графа, представленного на рис.1 матрица связности будет иметь вид таблицы.

  A B C D E
A
B
C
D
E

Из таблицы видно, что наибольшая лок. степень у вершины E: P(E)=4, у всех остальных вершин лок. степень равна 3.

Для того чтобы включенную в структуру модель представить в виде графа не структурную (количественную или текстовую) информацию довольно часто любому ребру (или любой вершине) рассматриваемого графа приписывают некоторый вес.

Граф, ребра (вершина) которого приписаны весу, называется взвешенными. Вес неудобно располагать на чертеже и схеме, поэтому взвешенный граф лучше представить в виде матрицы, такие матрицы называются матрицами весовых соотношений.

Пример: Составить взвешенный граф предложения: “С этого времени Цезарь один управлял всем в государстве по своей воле”.

В этом графе вершинами будут члены предложения, дуги синтетической связи между ними, причем вес приписан и вершинам и дугам, чтобы указать направление дуги в матрице используется знак “+” и “-“ (“+” - главное слово, “-“ -зависимое) связи, которую нужно отразить.

у – управление

с – согласные

к – координация

 

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Моделирование физической и биологической задачи.

 

Задача о пушке, которой надо попасть в крепость.

Известна высота башни h и расстояние S до неё. Найти угол , при котором снаряд из пушки попадёт в башню на высоте h.

Решение.

(см в лекциях)

Горизонтальное и вертикальное смещение снаряда за время t описывается формулами:

где - ускорение свободного падения = 9.8 и - начальная скорость вылета снаряда.

Выразим t из первой формулы и подставим во вторую:

Задача сводится к решению методом половинного деления где . Метод половинного деления или аналог в артиллерийском приёме (пристреле) – одно положение выше цели, второй выстрел ниже цели.

Алгоритм метода половинного деления смотри в численных методах.

Текст программы на Pascal:

 

program n1;

uses crt;

var v,h,s:integer;

a1,a2,a,h1,h2,hh:real;

begin

clrscr;

writeln('Введите начальную скорость');

readln (v); { Ввод с клавиатуры скорости }

writeln('Введите расстояние до цели');

readln(s); { Ввод с клавиатуры расстояния }

writeln('Введите высоту цели');

readln(h); { Ввод с клавиатуры высоты }

a1:=0; {начальный угол}

a2:=89; {конечный угол}

a:=(a1+a2)/2; {искомый угол т.е промежуточный угол}

hh:=s*(sin(pi/180*a)/cos(pi/180*a))-(9.8*s*s)/(2*v*v*cos(pi/180*a)*cos(pi/180*a));

{высота полёта при искомом угле}

while abs(hh-h)>0.01 do

{пока разность между искомым и полученным углом больше 0.001 то выполнять цикл}

begin

if hh>h then a2:=a ;

{если полученная высота больше искомой, то а2 = промежуточному углу}

if hh<h then a1:=a;

{если полученная высота меньше искомой, то а1 = промежуточному углу}

a:=(a1+a2)/2; (искомый т.е. промежуточный угол = середине между а1 и а2)

hh:=s*(sin(pi/180*a)/cos(pi/180*a))-(9.8*s*s)/(2*v*v*cos(pi/180*a)*cos(pi/180*a));

{расчёт новой высоты при новом промежуточном угле}

end;

write('Угол =',a); {вывод полученного угла}

readkey;

end.

Например, угол, при котором пушка попадёт на высоту 5, на расстоянии 10 при начальной скорости 20 равен 34 градуса.

Задания:

Найти необходимый угол выстрела, при скорости вылета снаряда 20, на расстояние 5, чтобы снаряд попал в цель на высоте 5.

Найти необходимый угол выстрела, при скорости вылета снаряда 15, на расстояние 5, чтобы снаряд попал в цель на высоте 5.

Найти необходимый угол выстрела, при скорости вылета снаряда 20, на расстояние 10, чтобы снаряд попал в цель на высоте 15.

Сделайте вывод о зависимости между необходимым углом и скоростью вылета снаряда;

Сделайте вывод о зависимости между необходимым углом и расстоянием до цели;

Сделайте вывод о зависимости между необходимым углом и высотой цели;

Сделайте вывод о зависимости между всеми параметрами модели.

 

Задача о кроликах и лисах.

На некотором острове живут лисы и кролики. Кролики питаются травой, а лисы кроликами. Экологи пересчитывают кроликов и лис и сделали вывод:

1. Коэффициент прироста числа кроликов зависит от колебания погоды (холодная или тёплая) и колеблется от 3.2 до 4.7

2. Коэффициент прироста числа лис при избытке крольчатины колеблется от 5.2 до 5.7. При недостатке прирост пропорционален приросту кроликов.

3. Коэффициент пропорциональности =50

Требуется установить, как меняется численность кроликов, и лис с течением времени.

 

Построение модели и схему взаимодействия лис и кроликов смотри в лекциях.

Текст задачи на Pascal:

 

program n2;

uses crt;

var i,n:integer;

m,m1,l1,l,

k,a:real;

begin

clrscr;

write('vvedite kolichestvo let');

readln(n);

write('vvedite nachalnoe kolichestvo krolikov');

readln(m);

write('vvedite nachalnoe kolichestvo lis');

readln(l);

write('vvedite koefficient prirista krolikov');

readln(k);

write('vvedite koefficient prirista lis');

readln(a);

for i:=1 to n do

begin

m1:=(1+k)*m-50*l;

if a<(m1-m)/50 then l1:=(1+a)*l else l1:=(1+(m1-m)/50)*l;

l:=l1;

m:=m1;

end;

writeln('kolichestvo lis = ',l);

writeln('kolichestvo krol = ',m);

readkey;

end.

 

 

Решение в Excel:

 

На рисунке видно, что в ячейки B1-B4 вводим исходные данные. В ячейку E8 вводим формулу =(1+МИН($B$3;(F8-F7)/50))*E7 затем растягиваем ячейки вниз на необходимое количество лет (в данном примере 21 год; от 0 до 20). В ячейку =(1+$B$4)*F7-E7*50 и аналогично растягиваем. В результате в ячейках E7-E27 получим количество лис в соответствующих справа годах. В F7-F27 – количество кроликов. Например, видно, что при начальном количестве кроликов = 10000, при количестве лис = 100, и коэффициентах роста для кроликов = 4 и лис =0,1 количество кроликов через 10 лет будет 85136221274 а лис 259.

 

Задания:

Исследуйте по модели количество кроликов и лис при начальном количестве 1000 кроликов. Что произошло? В чём погрешность модели?

Исследуйте по модели количество кроликов и лис при начальном количестве 10000 кроликов и различных коэффициентах роста кроликов и лис. Сделайте выводы.

Сделайте выводы о взаимосвязи между различными параметрами.

 

Моделирование в среде MathCAD задачи «Хищники и жертвы».

Составим по данной математической модели программу на языке MathCAD (см. теорию), и определим колебания числа жертв и хищников, решив нелинейные дифференциальные уравнения:

Выбираем стандартную функцию ORIGIN

ORIGIN:=1

B:=4 {из данных}

{столбец неизвестных}

F(t,y):=

ORIGIN:=0

z:=Rkadapt(y,0,50,1001,F)

t:=z(0)

x:=z(1)

y:=z(2)

Строится график:

 

 

Примеры лекций и практик

Курс “Компьютерное моделирование”

Доц.Богданова М.В.

Уважаемые студенты!

Вашему вниманию предлагается курс лекций и

содержание практических занятий, после изучения

Последнее изменение этой страницы: 2017-07-22

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...