Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Тепло, аккумулированное хладагентом через теплообменник, сбрасывается в воздух.

Производительность воздушного теплообменника или количество тепла, которое может отдать или получить через него хладагент, зависит от конструкции теплообменника и температуры воздуха, проходящего через него.

Поэтому основная проблема, ограничивающая использование бытового кондиционера с реверсивным циклом зимой, – это изменение производительности теплообменника компрессорно-конденсаторного блока при снижении температуры окружающего воздуха, производительность быстро падает, и при -30°С составляет всего 40% от номинала.

Причем при работе на «холод» теплообменник оказывается «переразмеренным» (слишком большим), а при работе на «тепло» – «недоразмеренным» (слишком маленьким).

РАБОТА В РЕЖИМЕ ОХЛАЖДЕНИЯ

При работе кондиционера в режиме охлаждения возникает целый ряд дополнительных проблем:

Снижение производительности холодильной машины.

Увеличение продолжительности переходного режима работы кондиционера.

Натекание» жидкого хладагента в картер компрессора.

Проблема запуска компрессоров при низких температурах окружающего воздуха.

Проблема отвода дренажной воды.

Остановимся на отрицательных последствиях указанных проблем. А именно:

1. снижение холодопроизводительности кондиционера;

2. обмерзание внутреннего блока кондиционера и, как следствие, еще большее снижение производительности, риск гидроудара и повреждения компрессора;

3. нарушение работы системы отвода конденсата (конденсат по покрытому льдом теплообменнику стекает мимо дренажной ванны на вентилятор и выбрасывается в помещение);

4. ухудшение охлаждения электродвигателя компрессора, периодическое срабатывание тепловой защиты, риск теплового пробоя изоляции;

5. чрезмерное повышение температуры нагнетания компрессора, риск повреждения пластмассовых деталей четырехходового вентиля;

6. риск гидравлического удара при пуске компрессора из-за вскипания хладагента, натекшего в компрессор;

Замерзание дренажной магистрали.

К счастью, перечисленные проблемы, возникающие при работе кондиционера на «холод», имеют решение. Это использование зимнего комплекта кондиционера. Он позволяет удержать производительность кондиционера при работе в режиме охлаждения почти на номинальном уровне.

СОСТАВ ЗИМНЕГО КОМПЛЕКТА

Замедлитель скорости вращения вентилятора. Он решает задачу снижения

Производительности теплообменника компрессорно-конденсаторного блока, уменьшая поток проходящего через него воздуха. Чувствительным элементом замедлителя является датчик, контролирующий температуру конденсации. Исполнительным элементом является регулятор скорости вращения вентилятора внешнего блока. Замедлитель обеспечивает поддержание заданной температуры конденсации. Попутно решаются проблемы снижения производительности кондиционера, обмерзания. Таким образом, устанавливается замедлитель внутреннего блока и другие, связанные с переразмеренностью теплообменника компрессорно-конденсаторного блока.

Нагреватель картера компрессора.

Он решает проблемы пуска холодного компрессора, препятствуя его повреждению. Механизм защиты следующий: при остановке компрессора установленный на нем нагреватель картера начинает работать.

Даже небольшая разница температур между деталями наружного блока и компрессором, создаваемая нагревателем, исключает натекание хладагента в картер. Масло не загустевает и закипание хладагента при пуске компрессора не происходит.

3. Дренажный нагреватель. Он осуществляет отвод конденсата из кондиционера, если дренаж выведен наружу. В настоящее время используют несколько типов дренажных нагревателей. По способу установки их можно разделить на 2 группы:

1 – дренажные нагреватели, устанавливаемые внутрь дренажной магистрали;

Дренажные нагреватели, устанавливаемые снаружи дренажной магистрали.

РАБОТА В РЕЖИМЕ ОБОГРЕВА

Определенные проблемы возникают и при работе кондиционера в условиях низких температур в режиме теплового насоса. Заметим, что существует два источника тепла, которое кондиционер «перекачивает» в помещение.

Во-первых, это тепло, которое забирается из наружного воздуха. Во-вторых, это теплота работы сжатия компрессора и теплота, выделяемая электродвигателем компрессора. Первая составляющая сильно зависит от температуры наружного воздуха и, по сути, определяет все негативные явления, происходящие в кондиционере при низких температурах наружного воздуха. Для того чтобы тепло наружного воздуха перетекало в нужном направлении, температура фазового перехода хладагента (испарения) должна соответствовать определенной величине, которая является характеристикой теплообменника и называется полным перепадом.

Что происходит в кондиционере, работающем на «тепло», при температурах, близких к 0.°С? Температура фазового перехода для нормального процесса переноса тепла устанавливается ниже температуры окружающего воздуха на величину полного перепада, которая для наружных блоков бытовых кондиционеров составляет 5-15°С., То есть уже при температуре окружающего воздуха +5°С температура фазового перехода (испарения), даже для хорошего теплообменника с малым перепадом, отрицательная. Это приводит к тому, что теплообменник начинает покрываться инеем, ухудшается теплообмен с воздухом, растет полный температурный перепад, температура испарения падает. Поскольку производительность кондиционера практически пропорционально зависит от давления.

Мощности «заросшего» инеем теплообменника недостаточно для испарения поступающего в него жидкого хладагента, и он начинает поступать на всасывание компрессора. Какие последствия для кондиционера это может вызвать?

1. Система оттаивания наружного блока, периодически включаясь в работу, приводит к образованию льда внутри компрессорно-конденсаторного блока кондиционера. А образовавшаяся наледь зачастую вызывает блокировку или разрушение лопастей вентилятора.

Последнее изменение этой страницы: 2016-06-09

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...